DOE FE0031617 KICKOFF MEETING

Novel Modular Heat Engines with sCO2 Bottoming Cycle Utilizing Advanced Oil-Free Turbomachinery

PI: Bugra Ertas, PhD

Senior Principal Engineer, Mechanical Systems

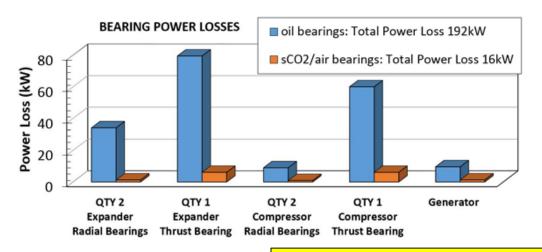
GE Global Research

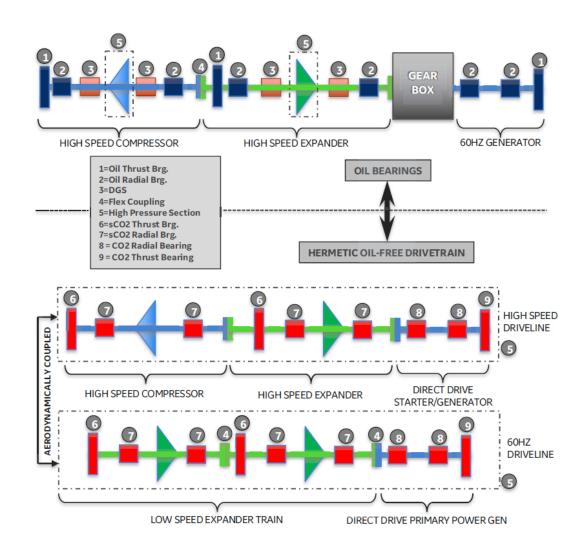
9/7/2018


TOPICS

- Background
- Project objective(s)
- Technical approach
- Project structure
- Project schedule
- Project budget
- Project Management Plan, including Risk Management

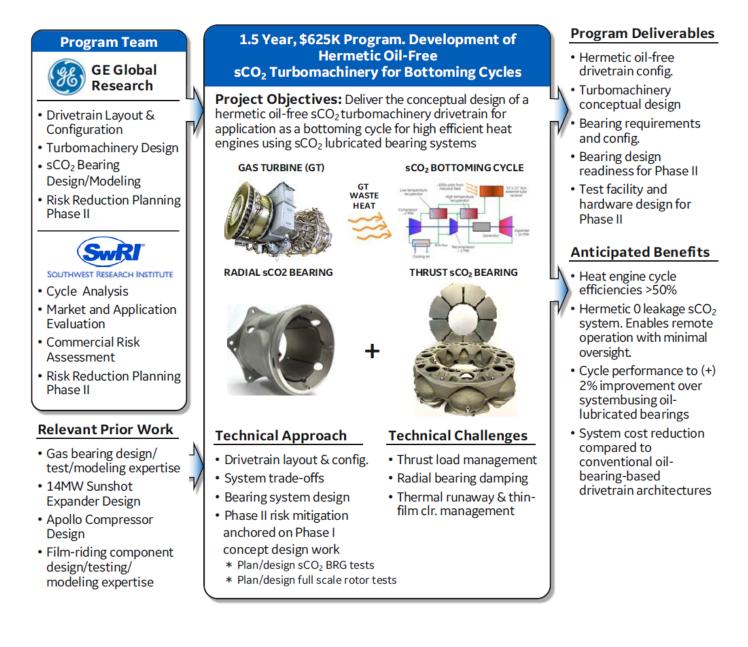
BACKGROUND


TARGET APPLICATION & MOTIVATION


- Target application → heat engines for pipeline compression (PC); currently not using WHR
 - 20% upgraded using bottoming cycle natural gas savings of 42 billion cubic feet/year
 - 120M in annual fuel costs
 - 2.5M ton reduction in annual CO2 emissions
- General simple cycle gas turbine cycles yield ~25-35% efficiency
- Combined cycle (GT + bottoming cycle) yield
 >50% cycle efficiencies
- In power plants \rightarrow steam turbine bottoming cycle
- Steam turbine packages impractical for PC
 - Complex operation
 - Make-up water
 - On-site operator
 - Large system components (LPT/H2O condenser)

Advanced sCO₂ Cycle using Hermetic Oil-Free Drivetrain

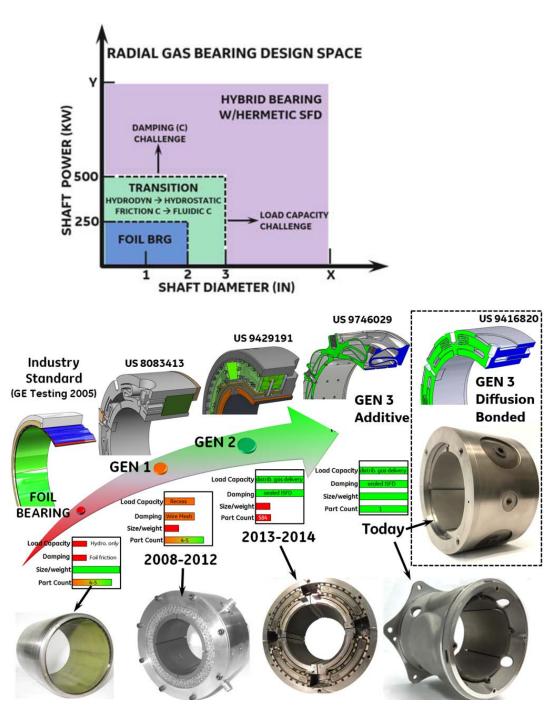
- Current high power >10MW sCO2 cycles utilize oil-bearings
 - Requires sealing
 - Loss of CO2 overtime (recharging needed)
 - Power loss of bearings is high (high speed)
- Concept \rightarrow replace oil bearing with CO2 bearings
 - CAPEX cost savings \rightarrow ~400K
 - No gearbox/oil skid/dry gas seals
 - Hermetic system = no CO2 recharging
 - Lower bearing power loss ~2 cycle points



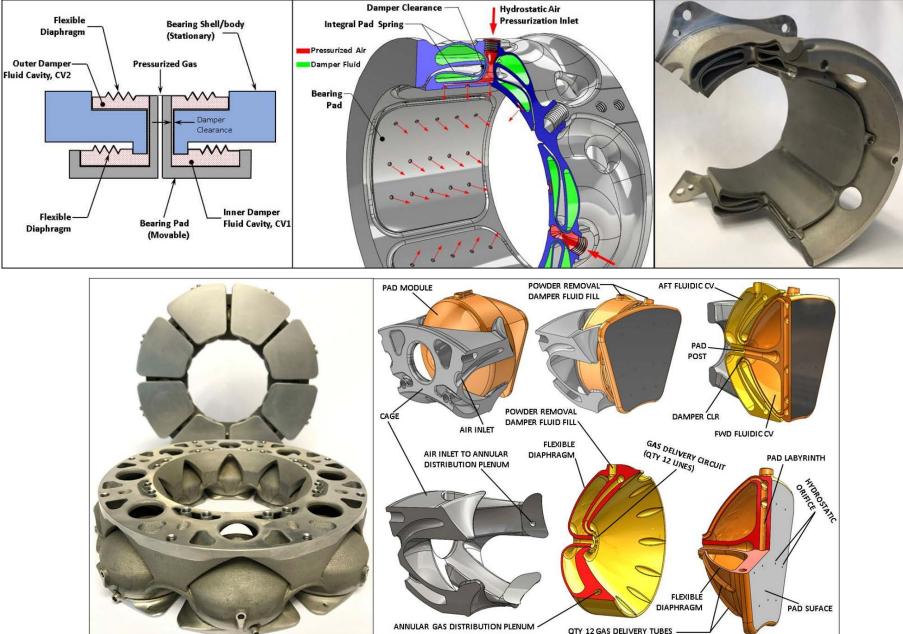
SIGNIFICANT CAPEX AND OPEX REDUCTION OPPORTUNITY

PROJECT OBJECTIVES/STRUCTURE

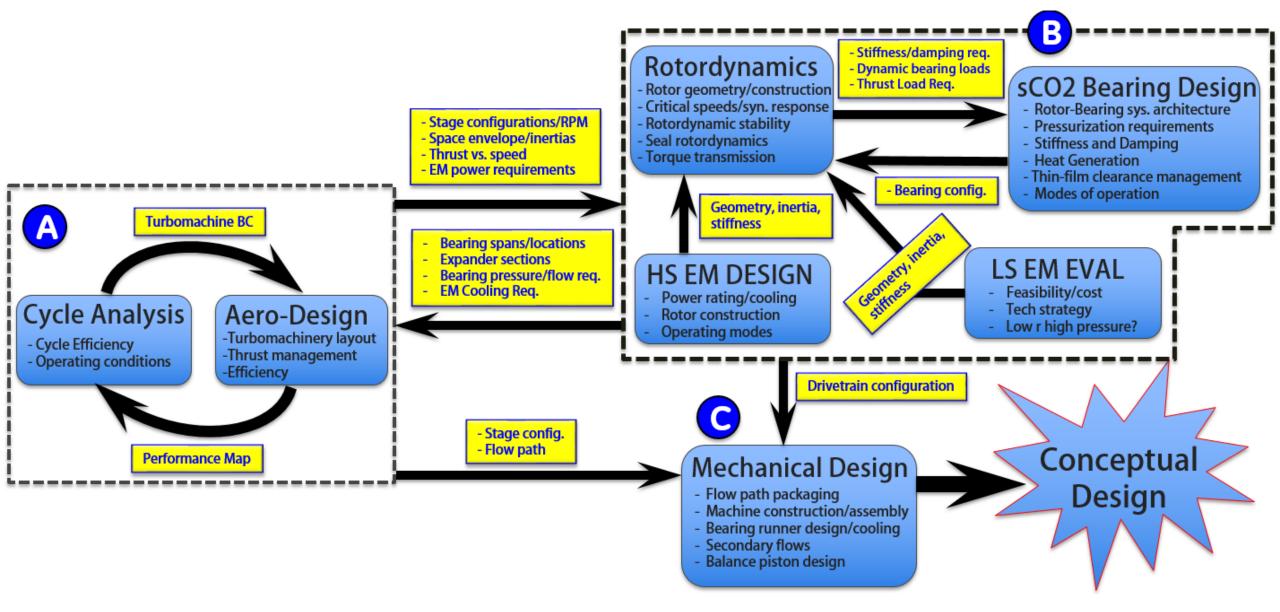
PROJECT OBJECTIVE & STRUCTURE


- Project objective
 - Conceptual design of a hermetic oil-free sCO2 drivetrain for a bottoming cycle
 - Commercial assessment and viability of the concept
- Program structure
 - GE
 - Drivetrain layout/design
 - Aero-design
 - Bearing design
 - Electric machine design
 - Southwest Research Institute
 - Commercial assessment
 - Market evaluation
 - Cycle analysis/definition

TECHNICAL APPROACH


KEY ENABLING TECHNOLOGY

- Current state of the art mainstream gas bearing \rightarrow foil bearings
- Foil bearing traits
 - Suitable for small turbomachinery ~300KW
 - Operates on principle of hydrodynamics
 - Rubbing occurs at low speeds
 - Low load capacity at low speeds
 - Significantly lower damping vs. to oil bearings
 - Foil structure compliance a key trait for reliable operation
- Desired traits for next gen gas bearing for large turbomachinery
 - Leverage/translate key flexibility elements from foil bearing
 - Allow for external pressurization capability for high load capacity
 - Develop damping concept = to oil bearing dampers
 - Cost neutral concept vs. oil bearing



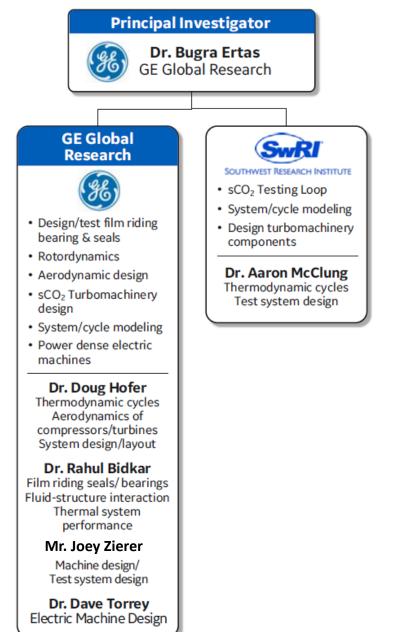
CONCEPT NECESSITATES COMPLEX FUNCTIONALITY AND LOW COST

CANDIDATE BEARING CONCEPTS: ADDITVELY MANUFACTURED

TECHNICAL EXECUTION & APPROACH FOR CONCEPTUAL DESIGN

TECHNICAL RISKS & MITIGATION

- Three main high level risks in this project:
 - Gas Bearings
 - Electric Machines
 - Rotordynamics
- Bearings
 - Load capability
 - Damping
 - Thin film clr. Management
 - Thrust management
- Electric machine
 - Operation in pressurized CO2 environment
 - Cost
- Rotordynamics
 - Long 60Hz expander (many stages)


Description of Risk	Impact	Risk Management Mitigation and Response Strategies							
Technical Risks									
Designing a high efficiency 60Hz expander	MED	Designing a configuration with a high number of turbine stages							
Rotordynamics risk due to high number of turbine stages in 60Hz driveline	MED	Segmented expander configuration with multiple and flex couplings between segments							
Defining bearing boundary conditions and requirements	HIGH	Successful expander design and Rotordynamics will dictate these boundary conditions and requirements.							
Gas thrust bearing sustaining high thrust loads	HIGH	Careful design of balance piston sections anchored to appropriat stage pressures to mitigate thrust loads. Optimized thrust bearing design able to sustain mission cycle thrust loads through robust engineering of gas delivery system and fluid-film management.							
Thermal runaway of the bearing fluid-film	HIGH	System level thermal-mechanical analysis addressing centrifugal shaft growth, thermal bearing-runner distortions due to film heating, misalignment, dynamic deflected mode shapes through critical speed transitions, and transient pressurization availability throughout the mission cycle. Analysis will drive flexibility of the bearing support and the gas delivery protocol to the flexible bearing pads aimed at ensuring safe and reliable fluid-film thickness values throughout the mission cycle.							
Low damping of bearing system risking rotordynamic HIC instability		Design of a hermetically sealed squeeze film damper in the bearing support using an incompressible damper fluid. Implementation of annular gas damper seals at balance piston locations.							
Bearing/shaft misalignment	MED	Designing flexibly mounted pads that absorb misalignment and protect the fluid-film							
Inability of electric machine to operate in a high pressure sCO ₂ environment	HIGH	Implement sealing system between turbomachinery and electric machine to reduce pressure in electric machine environment							
Ability of sCO ₂ radial bearings to support 10MW generator reaction loads	HIGH	Adequate design of pressurized gas delivery to the bearing pad while optimizing bearing pad geometry and projected area.							

PROJECT SCHEDULE/BUDGET/MANAGEMENT

SCHEDULE & BUDGET BY DISCIPLINE AND INDIVIDUALS

TRAVEL = 1.8K	= GO/NO-GO	QU	ARTE	R 1	QU	ARTE	R 2	QU	ARTE	R 3	QU	ARTE	R 4	QL	JARTI	R 5	QU,	ARTE	R 6
PROJECT MANAGEMENT (GE)	RESOURCE	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18
TASK/SCHEDULE/COST MANAGMENT	ERTAS																	80	ж
CONSULTING/TECHNICAL OVERSIGHT	DOUG										20K							11	L5K
CONSULTING/TECHNICAL OVERSIGHT	JASON										5K								
SIZING & TRADEOFFS (GE)	RESOURCE	M1	M2	M3	M4	M5	M6	М7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18
AERO ANALYSIS	RK						50K												
MECHANICAL DESIGN	RAHUL /JOEY							50K	13	ОК									
EM DESIGN/SIZING	DAVE TORREY								30К										
CONCEPTUAL DESIGN (GE)	RESOURCE	М1	M2	M3	M4	M5	M6	M7	M8	М9	M10	M11	M12	M13	M14	M15	M16	M17	M18
AERO ANALYSIS	RK									55K									
MECHANICAL DESIGN	JOEY/ERTAS												70К		195	к			
BEARINGS	RAHUL/ERTAS													70K					
PHASE II RISK RED. PLANNING (GE)	RESOURCE	M1	M2	M3	M4	М5	M6	М7	M8	М9	M10	M11	M12	M13	M14	M15	M16	M17	M18
sCO2 BEARING TEST DESIGN	RAHUL/UTTARA											65K							-
FULL SCALE DEAD ROTOR TEST DESIGN	JOEY/ERTAS									130		65K							-
SWRIWORK	RESOURCE	М1	M2	M3	M4	М5	M6	М7	M8	М9	M10	M11	M12	M13	M14	M15	M16	M17	M18
PROGRAM MANAGEMENT	MCCLUNG																		15K
CYCLE DEVELOPMENT	MCCLUNG				15K										E V				
MARKET/COMMERCIAL RISK ASSESS.	MCCLUNG											20K	,	<u> </u>	55K				
RISK REDUCTION TEST PLANNING	MCCLUNG												15K						

Key Contributor and Role	Scientific Mastery of Technology	% Time	
Dr. Bugra Ertas, GE, PI	Turbomachinery Rotordynamics, Gas Bearings, Machine Design	44	
Dr. Doug Hofer, GE, Thermodynamic Cycle and Aerodynamics	Turbomachinery Aerodynamics, Thermodynamic Cycles, System Design	10	
Dr. Rahul Bidkar, GE, Bearing Design	Film Riding Seals and Bearings, Thermal Performance, Machine Component Design, Fluid-Structure Interaction	26	
Mr. Joey Zierer	Machine Design, Test Systems for Turbomachinery Components	17	
Dr. David Torrey	Electric machines design	15	
Dr. Aaron McClung, SwRI	Thermodynamic Cycles, sCO ₂ Turbomachinery	10	

SCHEDULE & BUDGET BY TASK/BUDGET PERIOD

			2018	3	2019					
Program Schedule	넁	SwRI	Q3	Q4	Q1	Q2	Q3	Q4		
Task 1: Project Management & Planning	Т	\square								
Task 1.1: Co-ordinate GE and SwRI activities, risk management, reports										
Deliverable: Quarterly Reports			•		• •	• •	• •			
Deliverable: Final Report										
Task 2: Cycle Analysis	0	0	_							
Task 2.1: Define requirements and boundary conditions		0								
Deliverable: Cycle requirements			•							
Milestone: Thermo cycle defined			▲							
Task 3: Aero Analysis	0	Π								
Task 3.1: Turbine flow path	0		_	-						
Task 3.2: Three-dimensional blade design										
Deliverable: Flowpath design & layout					•					
Deliverable: Three-dimensional blade design					•					
Milestone: Aero Path and Stage Geometry Completed					▲					
Task 4: Bearing Design		Π								
Task 4.1: Bearing Design & Optimization				_			• • •			
Deliverable: Bearing geometry/architecture							•			
Deliverable: Stiffness/damping & operating condition requirements							•			
Milestone: Bearing Design Completed							A			
Milestone: Conceptual Design Completed							A			
Task 5: Mechanical Design	0	Π	=							
Task 5.1: Layout studies, assembly methods, stresses, rotordynamics	0		_			_				
Deliverable: Layout of sCO2 machinery						•				
Deliverable: Stress analysis of critical components						•				
Deliverable: Rotordynamic performance						•				
Task 6: EM Design	0	П	_							
Task 6.1: Conceptual Design of EM			-							
Deliverable: Conceptual design of PM EM, technology gaps & cooling requirements					•					
Milestone: Electric Machine Design completed & Configuration Defined					A					
Task 7: Design of Immersed Bearing Test Rig	0	Π				_				
Task 7.1: Detail design of test rig						-				
Deliverable: Concept layout of test rig								•		
Deliverable: Cost/schedule estimates for performing tests								•		
Task 8: Design of Full-scale Rotor Rig	0	Π								
Task 8.1: Detail design of simulated test rig	0									
Deliverable: Concept layout of test rig & bearing prototypes								•		
Deliverable: Cost/schedule estimates for performing tests								•		
Task 9: Market and Commercial Risk Assessment	•	0								
Task 9.1: Market assessment		•								
Task 9.2: Commercial risk assessment		0								
Milestone: Market/commerical risk assessment complete										
Milestone: Phase II Risk reduction planning completed										
GO/NO-GO Decision Point	+	Η								

Task	Go/No-G	o Decision Point	Success Criteria								
2 – 6	End of Phase I 12	2/31/2019	Conceptual design of oil-free hermetic sCO2 bottoming cycle								
9	End of Phase I 12	2/31/2019	Commercial a	Commercial and market viability							
7, 8	End of Phase I 12	2/31/2019	Phase II risk r	Phase II risk mitigation planning and test design completion							
-					-						
lea	m Member	Budget Period 1	Budge	t Period 2	Total						
GE Glo	bal Research	\$327,057		\$107,40	\$434,465						
SwRI		\$49,630		\$15,66	\$65,292						
OTAL		\$376,687		\$123,07	0 \$499,757						

Task lumber		Description		Planned Completion Date	Actual Completion Date (to be completed as part of the program)						
2	Thermodynamic	cycle defined		11/1/2018							
3	Aeropath and sta	age geometry completed		3/1/2019							
4	Bearing design o	completed		7/1/2019							
5	Mechanical desi	gn completed	5/1/2019								
6	Electric machine defined	design completed and co	2/1/2019								
9	Market/commerc	ial risk assessment comp	6/1/2019								
7, 8	Phase II risk red	uction planning completed	1	8/1/2019							