Development of a Remote External Repair Tool for Damaged or Defective PE Pipe

National Energy Technology Laboratory U. S. Department of Energy Project Kickoff Presentation December 16, 2003

> Ken H. Green Principal Investigator

Executive Summary

Remote External Repair Tool for PE Gas Pipe

Project Objectives

- [±] Develop remote external repair tool for damaged or defective PE gas pipe (i.e. rupture, puncture, gouge)
- [±] Demonstrate functionality & test performance of engineered prototype

Project Participants

- ^主 DOE NETL
- $^{\pm}$ Timberline Tool
 - ^主Oregon State University
 - ^主KeySpan Energy

Project Schedule

- $^{\pm}$ Phase 1: 18 months
- $^{\pm}$ Phase 2: 12 months

Forecast

Background

Maintaining a Growing & Aging Infrastructure

- Increased demand for natural gas places increased demand on the existing pipeline system
- Need for improved tools for construction, maintenance and repair of damaged or defective plastic pipes
- Preference for cost effective and efficient tools to facilitate repair through "keyhole" excavation access

Access and repair with minimal intrusion

"Keyhole" Access

Benefits:

- 1. Minimal excavation & surface disruptions
- 2. Less disruption to traffic & commerce.
- 3. Increased safety
- 4. Environmental savings

Remote External Repair Method

Operation of Remote Repair Tool

- Use keyhole technology to excavate the damaged area
- 2. Encapsulate damaged pipe using remote repair tool
- 3. Apply chemical repair patch

Standard Repair Method

- 1. Excavate upstream & downstream from the damaged area
- 2. Squeeze-off gas flow on both sides of damage
- 3. Excavate at site of damage & cut out damaged pipe section
- 4. Insert new section

Comparison of Repair Methods

Improvements over existing technology

Standard Method	VS Re	mote External Method
Requires operators to work in the trench		Operators do not work in the trench
Multiple excavations/ Multiple operations		One excavation/ One operation
Not suitable for keyhole or confined space		Keyhole & Confined Space Accessible
Time consuming and expensive		Significant time & labor savings
		ALL STILL

Timberline Tool

Benefits of Remote External Repair

Safe for operator and environment

- Operates remotely from ground surface
- Keeps operator out of the trench
- Operates in keyhole openings minimal impact to environment & neighborhoods

Cost effective

- Faster repair time = substantial cost savings
- Repair performed at site without additional excavation
- Uninterrupted gas service

Scope of Work

Project Objectives

- Develop remote external repair tool for damaged or defective PE gas pipe (rupture, puncture, gouge)
- Demonstrate functionality & test performance of engineered prototype

Design Goals

- Lightweight construction
- Top-down application
- Manual operation from ground level
- Operable in keyhole
- Effective operation on 4-inch PE pipe

Scope of Work

Phase 1: 18 months

- $^{\pm}$ Design, fabricate one or more test tools
- ^主 Perform in-house & field tests
- $^{\pm}$ Laboratory tests on repaired PE Pipe sections

Phase 2: 12 months

- $^{\pm}$ Construct one or more engineered prototypes
- ^主 Perform in-house & field tests
- $^{\pm}$ Laboratory tests on repaired PE Pipe sections

Tasks to Be Performed

Phase 1 Test Tool

- 1. Research Management Plan
- 2. Technology Assessment
- 3. Development of Test Tool
 - 3.1 Safety Considerations for Repairing Pressurized Pipe
 - 3.2 Test Tool Conceptual Design & Development
 - 3.3. Detailed Test Tool Designs
 - 3.4 Test Tool Construction & In-House Testing

Tasks to Be Performed

Phase 1 Test Tool

- 4. R&D of Chemical Bonding Process for Repair Patch
 - 4.1 Chemical Bonding Process
 - 4.2 Material & Thickness of Repair Patch
 - 4.3. Test Tool Performance Tests
- 5. Laboratory Testing on Repaired PE Pipe Sections
 - 5.1 Pressure Testing
 - 5.2 Accelerated Age Testing

Phase 1 Test Tool

- 6. Field Evaluation of Test Tool
 - Perform under simulated & actual field conditions
- 7. Technical Feasibility Assessment of Tool
 - Preparation for design & construction of engineered prototype

Tasks to Be Performed

Phase 2 Engineered Prototype

- 8. Design & Construct Prototype
 - 8.1 Mechanical Design & Construction of Engineered Prototype
 - 8.2 R&D of Chemical Bonding Process for Repair Patch
- 9. Laboratory Testing on Repaired PE Pipe Sections
 - 9.1 Pressure Testing
 - 9.2 Accelerated Age Testing

Tasks to Be Performed

Phase 2 Engineered Prototype

- 10. Field Evaluation of Engineered Prototype
 - Perform under simulated & actual field conditions
- 11. Performance and Design Assessment of the Engineered Prototype
 - In preparation for commercialization

Deliverables

- Research Management Plan
- Technology Status Assessment
- Periodic, Topical, and Final Reports
- Test Tools Phase 1
- Engineered Prototypes Phase 2

Project Team

Timberline Tool – Mr. Ken Green

Integrated Manufacturing & Research Facility Columbia Falls, MT

Oregon State University – Dr. Skip Rochefort Chemical Engineering - Polymer Laboratory Corvallis, OR

KeySpan Energy – Mr. Joe Vitelli, Jr. Principal Engineer Hicksville, NY

Project Schedule

Project Schedule

Task Schedule Phase 2														
Task/Subtask Description	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr
PHASE 2														
Task 8 - Design and Construction of Engineered PrototypeMechanical Design and Construction of PrototypeR&D of Chemical Bonding Process				•										
Task 9 - Laboratory Testing on Repaired PE Pipe Sections Pressure Testing Accelerated Age Testing														
Task 10 - Field Evaluation of Prototype													-	>
Task 11 - Assessment of the Prototype													_	>

Acknowledgements

Department of Energy and the National Energy Technology Laboratory

for their financial, technical, and administrative assistance in funding and managing the project through which this technology is being developed.

KeySpan Energy

for all their support in performing field evaluations.

