Selection and Treatment of Stripper Gas Wells for Protection Enhancement in the Mid-Continent

Presented by:
Scott Reeves
Advanced Resources International
Houston, Texas

Presented at:
“Field-Oriented Research Projects for Independents”
October 30, 2001
Jackson, Mississippi
Project Genesis

• In 1996, GRI (now GTI) began investigating potential for natural gas production enhancement via restimulation. Initial findings were:
 – Significant potential
 • >5 tcf incremental reserves in 5 years
 – Low reserve costs when successful
 • $0.10 - $0.20/Mcf
 – Critical success factors
 • Candidate selection (85/15 rule)
 • Problem diagnosis
 • Treatment strategy

• Major obstacles are:
 – Industry’s (understandable) reluctance to restimulate “good” wells, which frequently are the best candidates
 – Lack of “tools” or methods to cost-efficiently identify candidates and diagnose well performance problems
Subsequent Work

• GRI initiated a subsequent R&D program in 1998 with four primary objectives:
 ▪ Develop cost-effective, reliable methodologies to identify wells with high restimulation potential in tight sands.
 ▪ Identify various mechanisms leading to well underperformance.
 ▪ Develop new restimulation techniques tailored to selected causes of well underperformance.
 ▪ Demonstrate that with improved candidate recognition, problem diagnosis and restimulation methods, restimulation can be a substantial source of low-cost natural gas.
Candidate Selection Concept

- **Screening**
 - Rapid
 - Not engineering based
 - Statistical, AI approaches

- **Evaluation**
 - Engineering-based
 - Problem diagnosis, treatment selection
 - Forecasting, economic ranking

Sample Outcome
- Well No.
- Incremental Reserves
- Restimulation Economics

100 Wells (total population) → 50 Wells (potential candidates) → 15 Wells (high potential) → Candidate Verification

100 Wells
(total population)

50 Wells
(potential candidates)

15 Wells
(high potential)

Candidate Verification
Location of Restimulation Project Test Sites

Green River Basin
- Big Piney/LaBarge Producing Complex
- Frontier Formation
- Enron Oil & Gas (now EOG Resources)

Piceance Basin
- Grand Valley/Parachute/Rulison Fields
- Williams Fork Formation
- Barrett Resources (now Williams)

East Texas Basin
- Carthage Field
- Cotton Valley Sandstone
- Union Pacific Resources (now Anadarko)
Track Record of Success

- 9 wells restimulated
 - Green River Basin – 4
 - Piceance Basin – 2
 - East Texas Basin – 3
- 7 production improvements, 1 no change, 1 slight decline
- 6 “economic” successes
- Added 2.9 Bcf of reserves at a total reserve cost of $0.26/Mcf (costs include “failed” restimulations).
- Value of reserves gained by Operators more than offset cost of “R&D” project.

DOE Stripper Well Program

- Initiated in 2000.
- Objective of sustaining/improving production and reserves from stripper gas wells.
- Technologies developed under earlier GTI sponsorship can be modified for stripper well application.
U.S. Stripper Gas Distribution

<table>
<thead>
<tr>
<th>Rank</th>
<th>State</th>
<th>Number of Stripper Gas Wells</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>West Virginia</td>
<td>35,594</td>
</tr>
<tr>
<td>2</td>
<td>Ohio</td>
<td>33,430</td>
</tr>
<tr>
<td>3</td>
<td>Texas</td>
<td>27,368</td>
</tr>
<tr>
<td>4</td>
<td>Pennsylvania</td>
<td>26,000*</td>
</tr>
<tr>
<td>5</td>
<td>Kentucky</td>
<td>14,126</td>
</tr>
</tbody>
</table>

* Estimated

<table>
<thead>
<tr>
<th>Rank</th>
<th>State</th>
<th>Production from Stripper Wells (Mcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Texas</td>
<td>221,513,637</td>
</tr>
<tr>
<td>2</td>
<td>West Virginia</td>
<td>198,500,000</td>
</tr>
<tr>
<td>3</td>
<td>Oklahoma</td>
<td>114,668,483</td>
</tr>
<tr>
<td>4</td>
<td>Pennsylvania</td>
<td>100,000,000*</td>
</tr>
<tr>
<td>5</td>
<td>Ohio</td>
<td>79,333,000</td>
</tr>
</tbody>
</table>

*Estimated
Presentation Outline

Background

Project Description

Prior Work

Technology

Current Field Work

Application Guidelines

Future Work
Strategic Objective

• To develop an easy-to-use, low-cost analytic methodology to identify untapped production enhancement potential in stripper gas wells.
Tactical Objectives

• Develop a Candidate Screening & Selection Methodology
• Perform Field Demonstrations of its Application
• Disseminate Results to Industry
Project Scope

- Geographic
 - Mid-Continent
- Applications ("existing" production)
 - Restimulation
 - Production Practices (downhole and surface)
Virtual Intelligence

• Artificial Neural Networks (well performance model)
 - Statistical analogy
 - Pattern recognition
 - No “engineering” or “interpretive” bias

• Genetic Algorithms (best practices, problem identification)
 - Optimized optimization
Type-Curves

• Current Features
 ➢ Two-layer
 ➢ Variable Compressibility
 ➢ Fractured/Unfractured

• New Features
 ➢ Secondary Curves (e.g., cumulative production)
 ➢ Batch Processing

• Utility
 ➢ Differentiate depletion, low permeability, damage, production practices
 ➢ Quantify upside potential
Candidate Selection Approach

- Combine results of VI and TC analyses to identify candidates.
- Develop a screening/selection routine.
Perform Field Demonstrations

Perform Integrated Field Demonstrations

• Two Sites (+/- 100 wells each)
 > Tight Gas Formation
 > High-Permeability/Low-Pressure Formation

• Activities
 > Collect Data
 > Perform VI, Type-Curve Analyses
 > Select Candidates, Remediation Methods
 > Perform Treatments/Workovers (1-3 per site)
Current Status

• Performing candidate selection analytics at first test site.
• Seeking second test site.
Candidate Selection Methods

- **Statistics**
 - Public/Easily-Obtained Data
 - Production Statistics

- **Pattern Recognition**
 - Geologic, Log, Drilling, Completion, Stimulation, Workover Data
 - Minimum Data Interpretation
 - Virtual Intelligence (Artificial Neural Networks, Genetic Algorithms, Fuzzy Logic)

- **Engineering**
 - Engineering-Based Approach (Type-Curves, etc.)
 - Ranked by Incremental Production Potential
Data and Interpretation Requirements

- Low Data Requirements
- High Data Requirements
- Low Interpretation Requirements
- High Interpretation Requirements

- Time, Cost Increases
- Pattern Recognition
- Engineering
Coincidence Of “Top 50” Candidate Selections, Green River Basin

Statistics

Pattern Recognition

26 wells

9

9

6

5

30 wells

30 wells

Note: Top Candidates from each process do not necessarily coincide with top candidates from other processes.
Benchtop Study

- Create a hypothetical (simulated) field where all reservoir/completion properties are known, and restimulation potential can be readily computed.
- Independently select restimulation candidates with each technique and compare the selections with the known “answer.”
- Make the exercise as realistic as possible.
Comparison of Restimulation Candidate Selection Methods

<table>
<thead>
<tr>
<th>Approach</th>
<th>Incremental (Bcf)</th>
<th>Efficiency (Top 18 Wells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>4.566</td>
<td>100%</td>
</tr>
<tr>
<td>Best Pre-Restim Rate</td>
<td>3.896</td>
<td>85.3%</td>
</tr>
<tr>
<td>Virtual Intelligence</td>
<td>3.807</td>
<td>83.4%</td>
</tr>
<tr>
<td>Type Curves</td>
<td>3.421</td>
<td>74.9%</td>
</tr>
<tr>
<td>Best 10-Year Cum.</td>
<td>3.272</td>
<td>71.7%</td>
</tr>
<tr>
<td>Random</td>
<td>2.150</td>
<td>47.1%</td>
</tr>
<tr>
<td>Production Statistics</td>
<td>1.949</td>
<td>42.7%</td>
</tr>
<tr>
<td>Worst 10-Year Cum</td>
<td>0.775</td>
<td>17.0%</td>
</tr>
<tr>
<td>Worst Pre-Restim Rate</td>
<td>0.735</td>
<td>16.1%</td>
</tr>
</tbody>
</table>

Ultimate Conclusions

• Better wells make better restimulation candidates.

• Each candidate selection methodology may have specific applicability:
 - Statistics: Reservoir/operating practices broadly uniform.
 - Pattern Recognition: High degree of reservoir heterogeneity & completion/stimulation variation.
 - Engineering: High quality reservoir and production data.
Relevance to Stripper Wells

• Focusing on “best” stripper wells counter-intuitive.

• Adopt an integrated VI & TC approach with a screening criteria to tie them together.

 ➢ Weighting of one approach vs. the other can be a site-specific variable.
Virtual Intelligence

• Uni-variate analysis
• Multi-variate analysis
• Pattern recognition (artificial neural network).
Illustration of ANN Structure
Example Virtual Intelligence Methodology

<table>
<thead>
<tr>
<th>ARTIFICIAL NEURAL NET WORK</th>
<th>GENETIC ALGORITHM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space: X, Y, Z</td>
<td>• Total Proppant Volume</td>
</tr>
<tr>
<td>Time: Completion Date</td>
<td>• Total Fluid Volume</td>
</tr>
<tr>
<td>Completion: No. Perf. Intervals</td>
<td>• Fluid Type</td>
</tr>
<tr>
<td>Total Net Thickness</td>
<td></td>
</tr>
<tr>
<td>No. Fracs</td>
<td>FUZZY LOGIC</td>
</tr>
<tr>
<td>Total Proppant Volume</td>
<td>• GA Incremental</td>
</tr>
<tr>
<td>Total Fluid Volume</td>
<td>• Current Reservoir Pressure</td>
</tr>
<tr>
<td>Fluid Type</td>
<td>• Current Producing Rate</td>
</tr>
<tr>
<td>Total phi-h</td>
<td></td>
</tr>
<tr>
<td>Permeability Indicator</td>
<td></td>
</tr>
<tr>
<td>Drainage Area</td>
<td></td>
</tr>
</tbody>
</table>
Diagnostic Plot for Selecting Restimulation Candidates, Antrim Shale
Type-Curves For Production Enhancement Assessment

- **Production Data Analysis**
 - Logarithmic Distribution of Fracture Length Results
 - Producing Rate, Mcfd
 - Producing Time, months
 - Xe/Xf = 1 (bottom curve), 1.25, 1.50, 1.75, 2, 3, 5, 7, 10, Infinity (top curve)
 - Match Data:
 - h -- 43.0 feet
 - k -- 0.059 md
 - A -- 108 Acres
 - Xf -- 541 feet
 - EUR -- 2.254 Bcf

- **Arithmetic Average** of Fracture Half-Length Range:
 - Arithmetic Average = 374 feet
 - Median = 352 feet
 - Std Dev = 186 feet

- **Individual Fracture Length Interval Trends**
 - $y = 2229.5x^{0.7218}$
 - $R^2 = 0.6957$
 - $y = 2386.5x^{0.6073}$
 - $R^2 = 0.7259$
 - $y = 3111.1x^{0.5622}$
 - $R^2 = 0.8625$
 - $y = 4040.7x^{0.3384}$
 - $R^2 = 0.2277$

- **NLB 66-04**
 - Actual Rate
 - Simulated Rate
 - Original Forecast

- **Test Well Plots.xls**
Screening Criteria

Virtual Intelligence
- Optimized incremental production
 - Stimulation, artificial lift, FWHP

Type Curves
- Forecast incremental production
 - Perm, skin, area

Other
- No. zones per frac treatment
- Current reservoir pressure
- Current producing rates/ratios
- Historical peak rate, time/prod. since then
- Existence of step-change production drops
Presentation Outline

- Background
- Project Description
- Prior Work
- Technology
- Current Field Work
- Application Guidelines
- Future Work
Mocane-Laverne Gas Area, Oklahoma

- Central Anadarko basin
- Beaver/Harper/Ellis Counties
- Council Grove, Tonkawa, Morrow, Chester

- 2nd-largest Midcon gas play (Morrow), after Hugoton Wolfcamp.
- 2nd-largest Morrow field, after Watonga-Chickasha Trend.

- +/-100 well study
- Oneok Resources

Figure reproduced from: Atlas of Major Midcontinent Gas Reservoirs, 1993.
Structure/Stratigraphy*

*Figure reproduced from Atlas of Major Midcontinent Gas Reservoirs, 1993.
Formation Descriptions

<table>
<thead>
<tr>
<th>Formation</th>
<th>Age</th>
<th>Lithology</th>
<th>Gas Atlas Code*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morrow</td>
<td>Lower Pennsylvanian</td>
<td>Sandstone</td>
<td>PN-9A</td>
</tr>
<tr>
<td></td>
<td>Upper Mississippian</td>
<td>Limestone</td>
<td>MS-5</td>
</tr>
</tbody>
</table>

Reservoir/Fluid Properties*

<table>
<thead>
<tr>
<th>Property</th>
<th>Morrow</th>
<th>Chester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pay</td>
<td>20 ft</td>
<td>18 ft</td>
</tr>
<tr>
<td>Porosity</td>
<td>12%</td>
<td>8%</td>
</tr>
<tr>
<td>Water Saturation</td>
<td>38%</td>
<td>30%</td>
</tr>
<tr>
<td>Permeability</td>
<td>25 md</td>
<td>1 md</td>
</tr>
<tr>
<td>Gas Gravity</td>
<td>0.75</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Well Breakdown

Well Omission Summary

<table>
<thead>
<tr>
<th></th>
<th>Zone</th>
<th>Inactive</th>
<th>Completion Date</th>
<th>IHS Data</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>Not Min</td>
<td>14</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td>22***</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>43</td>
</tr>
</tbody>
</table>

*Active Wells

**Study well criteria:

- Morrow/Chester completion
- Currently active
- Completion prior to Jan-00
- IHS data available.

***Other Zones included:

- Tonkawa(10)
- Hoover (7)
- Other (5)
General Well Profiles

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion Date</td>
<td>1957-1999</td>
<td>--------</td>
</tr>
<tr>
<td>Depth (ft)</td>
<td>4700-8900</td>
<td>6900</td>
</tr>
<tr>
<td>EUR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Gas (MMcf)</td>
<td>10-8595</td>
<td>2174</td>
</tr>
<tr>
<td>– Oil (Mbbls)</td>
<td>0-47</td>
<td>5</td>
</tr>
<tr>
<td>Current Gas* Rate (Mcfd)</td>
<td>0-263</td>
<td>69</td>
</tr>
</tbody>
</table>

Note: About half of study wells currently produce less than 60 Mcfd.
Completion/Production Practices

Completion
• Morrow typically fractured; many different fluids; older treatments were very small.
• Chester typically acidized; occasionally acid-fractured.

Production
• Some form of artificial lift typically installed at some point to lift liquids.
“Flat File” Design for VI Analysis

Space & Time
- X (Long)
- Y (Lat)
- Top Morrow perf.
- Top Chester perf.
- Completion date

Completion/Stimulation
- Interval
- Treatment Type
- Fluid Type
- Fluid Volume
- Proppant Volume
- No. Stages

Reservoir
- No. perf. intervals
- Net perf. thickness

Subsequent Events
- Date
- Interval
- Activity
Test Site Status

• Data Collected
 ➢ IHS Energy
 ➢ In-house production/reserve records
 ➢ Well files

• Challenges being encountered
 ➢ Diversity of producing intervals which change and are reworked over time.
 ➢ Little digital data (except production).
 ➢ Little geologic/reservoir data.

• Status
 ➢ Manually creating “flat-file” for VI analysis.
 ➢ Performing TC analysis.
Next Steps

• Complete VI & TC analyses.
• Develop screening criteria, select candidates.
• Perform remedial work, observe/document results.
Presentation Outline

Background
Project Description
Prior Work
Technology
Current Field Work
Application Guidelines
Future Work
Application Guidelines

Why
To boost reserves and economic performance of marginal gas wells.

Where
Almost any setting is a valid target (complexity varies however).

How
- Build database
- Perform VI & TC analyses
- Select candidates
- Remediate Wells

When
Now.

Who
Operator.
Observations/Recommendations

- Most costly (analytic) elements are:
 - Data collection/digitization/organization.
 - Reporting (if required)
- Operators should invest in creating a digital database of all available well information (even simple spreadsheets are fine):
 - Any sophisticated analysis will eventually require this.
 - Cost of manually examining well files will eventually exceed investment in database.
- Each field will possess specific nuances:
 - Must capture existing field experience.
 - Design of VI application.
 - Screening algorithm
- Larger-scale programs will provide better overall results due to efficiencies of scale.
Presentation Outline

- Background
- Project Description
- Prior Work
- Technology
- Current Field Work
- Application Guidelines
- Future Work
Future Work

• Complete analysis of Mocane-Laverne wells, perform/document results of remedial treatments.

• Perform a similar analysis at a second site (sites currently being solicited).

• Technology transfer.
 - Publish results
 - “How To” manual
 - Software

• Completion date:
 - March 31, 2002.
Research Partner Information

Advantages
- Assessment of production enhancement for +/- 100 wells.
- Introduction to VI and TC applications.
- Keep tools for future in-house use.

Requirements
- Operator of +/- 100 stripper gas wells in a single play.
- Data availability (preferably in electronic format)
- Willingness/ability to perform 1-3 remediation treatments/workovers.
- Agree to release results into public domain.

Contact
- Scott Reeves, Advanced Resources International, 713-780-0815