Extended Performance Handheld Sensor for Remote Detection of Natural Gas Leaks

David Green, Mickey Frish, Rick Wainner, Mark Allen Physical Sciences Inc. Graham Midgley – Heath Consultants Inc.

Natural Gas Delivery Reliability Kick-off Meeting December 5, 2002 National Energy Technology Laboratory Morgantown, West Virginia

Physical Sciences Inc.

Andover, MA 01810

Extended Performance Handheld Sensors for Remote Detection of Natural Gas Leaks - Objective

- Physical Sciences Inc. and Heath Consultants have previously developed a walking survey tool for natural gas distribution networks (RMLD)
- Performance optimized for quasi-stationary surveys of residences
- Objective of Cooperative Phased Research Agreement is to extend function and capabilities based on:
 - community needs
 - market assessment
- Consider mobile application, greater range or sensitivity, improved detection thresholds, atmospheric compensation
- Recommend extended performance RMLD concept to NETL
- Fabricate and demonstrate enhanced performance sensor in laboratory

VG02-315-2

To develop a device that can detect methane from outside the leak plume using laser light technology

- It must be portable, fieldworthy, and lightweight
- It must be as sensitive as existing leak surveying tools and methods
- It must be able to locate the presence of methane gas only – gas leak yes or no!
- It is not intended to be a leak pinpointing/ measurement tool (CGI)

Principles of Operation

- The RMLD is based on the established Tuneable Diode Laser Absorption Spectroscopy (TDLAS)
- Laser beam projected from devices, through gas cloud, to topographic surface up to 100 ft (30 m) distant
- Laser light scattered from topographic surface is partially collected by device
- Wavelength Modulation Spectroscopy (WMS) is utilized to deduce the path-integrated gas concentration

Benefits

- A portable RMLD unit will improve walking survey operations:
 - hard to reach or difficult areas (e.g., over or through fences, under parked vehicles)
 - service leak survey can be performed near or at sidewalk
- Check inside buildings or confined spaces from outside via a closed window or access
- Estimates show productivity savings from 20% to 40% for the average size utility
 - for some companies this can result in annual savings of \$500,000

- Able to locate leaks from 100 feet away
- Achieve sensitivity to few ppm-m methane
- Response time needs to be a fraction of a second
- Laser light source needs to be eye-safe
- Battery recharge to be >8 hours
- Must be lightweight, rugged and weather-proof
- User friendly interface with familiar signals
- Withstand temperatures from -20°F to 120°F
- Sales price around \$10,000

- Laser light is projected over a distance onto a reflective target (e.g., grass, wall, etc.)
- A fraction of the light is diffusely scattered from the target surface and returns back to the receiver
- If methane is present a portion of the returning light will be modulated at twice the frequency
- Returning light is efficiently collected and focused onto a detector
- Synchronous detection and amplification to produce methane readings in ppm-m
- Calibration verified by gas in absorption cell

RMLD - Laser Light Path

PHYSICAL SCIENCES INC

RMLD Development An Aggressive Schedule

• The RMLD project was initiated in January 01

- project phases
 - 1-Assessment review competing technologies
 - 2-Feasibility product spec and sensor design
 - 3-Prototype development and test (EP)
 - 4-Develop advanced prototype (AP)
 - 5-Develop Pre-Production units
- An AP unit will be delivered to NYGAS in December 2002 for field tests
- From concept to "Alpha" prototype in less than 2 years!

Development of Portable Electronics

VG02-315-9

• Previous TDLAS systems required rack of electronics for:

- laser control
- laser modulation
- signal detection/amplification
- signal demodulation
- power conditioning
- Decided portability key to concept demo (risk)
- Careful power management throughout design
- Single board (6"square) electronics in control unit
- Four ounce battery provides >8 hours of operation

RMLD - EP Components

• Control pack (hip mount with harness)

- laser emitter subsystem
- battery pack for 8 hours use
- Transceiver laser transmitter/receiver/optics
- Umbilical cord fiber optic/electrical connection

RMLD - Leak Scan Operation

VG02-315-11

Several leak scan methods being evaluated!

User interface:

- Audible alarm
- Bar graph
- Touch pad menu
- Target sights

Methane Column Concentration

- RMLD operates differently than FI
- Detects everywhere along sight line (do not need to be in plume)
- Sum of concentration x width
- Path summation permits rapid survey
- Triangulation to begin localization

RMLD Field Test Results

VG02-315-13

• Successful EP testing with "real" leaks in Lowell, MA - Nov. 2001

- found 14 out of 16 leaks
- known and blind leaks with FI follow-up

 Successful EP+ testing in outside facility for gas leak training – April 2002

- able to setup controlled leaks
- direct comparison to FI
- found 20 out of 22 leaks
- able to find leak that FI missed (meter)

• Needed to improve sensitivity and light filtering problems

RMLD Data Collection at 30 ft Upwind

Gas Detection with Varying Backgrounds

Survey Detection of Leak Behind Oleander Shrub

Gas Detection Through Closed Window

Leak Under (Bob's) Parked Vehicle

L66;NPR

- RMLD CU subjected to varying environmental temperatures. Ambient, heat sink, laser, and PCB temperatures monitored.
- RMLD operates from 0 to 122°F (-18 to 50°C). Meets specification.
- Laser attains operating "setpoint" temperature on startup at all temperatures within ~5 seconds ("left out in the cold" or "in the sun")
- Extreme temperatures yield laser temperature drift of 0.2°F. If RMLD is calibrated at room temperature, CH₄ sensitivity is 64% at 0°F, 87% at 32°F, 100% at 72°F, 89% at 95°F, 71% at 122°F.

Battery Lifetime

• 1.8A-hr (7.4V) Li ion Battery meets 8 hour lifetime at 32°F specification

AP Transceiver Housing Showing Reduction in Size from EP

Key Accomplishments

- RMLD has gone from a concept drawing to a fieldworthy prototype in a very short time!
 - went from lab-rack to a "true" portable unit
 - able to achieve laser control and stability
 - reduce noise effects electronic and environmental
 - optimize optics design (cost and performance)
 - optimize physical design
 - demonstrate on a variety of backgrounds
 - flawless operation in extreme weather cold and hot
 - develop user-friendly interface minimal training
- Sensitivity and light filtering problem solved
- Major technical problems have been resolved

Alpha Prototype

- Improved user interface
- Improved sensitivity and light rejection
- Commercial Partner integral to program
- Delivery to sponsor consortium in December
- Product introduction Fall 2003

RMLD Development Schedule

- Critical Design Review Completed Aug 2002
- Delivery of AP units to NYGAS- Dec 2002
- Field tests at company locations
- Provide feedback for pre-production RMLD
- Heath to build pre-production models
- Introduce RMLD at AGA 2003 Ops Conference
- Pre-production models to be fully tested Summer 2003
- Seeking community support for new stand-off detection technology

RMLD-XP Cooperative Research Agreement Tasks

- 1.0 Research Management Plan (Month 1)
- 2.0 Technology Status Assessment (Month 2)
- 3.0 Design of extended performance RMLD (Month 2)
 - 3.1 Spatial range extension
 - 3.2 Performance improvements
 - 3.3 Power enhancement
 - 3.4 Operation wavelength
 - 3.5 Survey user community
 - 3.6 Conceptual design of extended performance RMLD (-XP)
 - 3.7 Present recommendation to NETL staff
- 4.0 Fabricate and demonstrate RMLD XP prototype in laboratory
- 5.0 Ethane detection feasibility
- 6.0 Annual Review Meeting participation; Final briefing and report

