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ABSTRACT 
 
 
A light-weight, easy to use ground penetrating radar (GPR) system for tracking metal/non-metal 
pipes has been developed. A pre-production prototype instrument has been developed whose 
production cost and ease of use should fit important market niches. It is a portable tool which is 
swept back and forth like a metal detector and which indicates when it goes over a target (metal, 
plastic, concrete, etc.) and how deep it is.  The innovation of real time target detection frees the 
user from having to interpret geophysical data and instead presents targets as dots on the screen. 
Target depth is also interpreted automatically, relieving the user of having to do migration 
analysis. In this way the user can simply walk around looking for targets and, by “connecting the 
dots” on the GPS screen, locate and follow pipes in real time. This is the first tool known to 
locate metal and non-metal pipes in real time and map their location. 
 
This prototype design is similar to a metal detector one might use at the beach since it involves 
sliding a lightweight antenna back and forth over the ground surface. The antenna is affixed to 
the end of an extension that is either clipped to or held by the user. This allows him to walk 
around in any direction, either looking for or following pipes with the antenna location being 
constantly recorded by the positioning system. Once a target appears on the screen, the user can 
locate by swinging the unit to align the cursor over the dot. 
 
Leak detection was also a central part of this project, and although much effort was invested into 
its development, conclusive results are not available at the time of the writing of this document.  
Details of the efforts that were made as a part of this cooperative agreement are presented. 
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1 INTRODUCTION 

 
This collaboration has developed a light-weight, easy to use ground penetrating radar (GPR) 
system for tracking metal/non-metal pipes. That gas leaks can also be detected using this new 
tool awaits confirmation through digging. A pre-production prototype instrument has been 
developed whose production cost and ease of use should fit important market niches. It is a 
portable tool which is swept back and forth like a metal detector and which indicates when it 
goes over a target (metal, plastic, concrete, etc.) and how deep it is.  In this way the user can 
simply walk around looking for targets and, by “connecting the dots”, follow pipes in real time. 
This is the first tool known to locate metal and non-metal pipes in real time and map their 
location.  
 
 

 
Figure 1: The Util-Lite deployment looking for natural gas leaks.  

  
 
As is commonly known, GPR is no silver bullet; in heavy clay soils, small deep pipes are often 
impossible to see. The laws of physics limit the penetration depths based on soil conductivity. 
But since, in most soils, pipes can be successfully locate regardless of pipe composition and 
crossing angle, this could be an important addition to the arsenal of pipe locators. Typically, a 10 
cm pipe 1m down is easily tracked using this device. In the best Florida soils, a 10 cm pipe can 
be targeted more than 7m down. In the worst Houston clays, one not might see more than 70cm 
down.  
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Targets LocatedTargets Located
 

Figure 2: A functional depiction of a portable swept pipe finder/leak detector 

 
The user can follow the pipe as he walks along (Figure 2), distinguishing its depth from other 
pipes that either cross or are running alongside. He can tell when it bends or branches and, most 
importantly, locate places where it may be broken. 
 

 
A lot of work has gone into detecting gas leaks as well. The advantage of using GPR for leak 
detection is the chance of detecting the leak at the point of the break, rather than at the point it 
exits the ground. The idea is to exploit GPR’s ability to detect subtle changes in soil moisture. At 
the point where gas leaks from a pipe, the soil overburden will become desiccated. This change 
produces several measurable changes in the GPR response. 

 
 

 
Figure 3: Idealized depiction of signal changes over a gas leak 
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This Pipe Location/Leak Detection Tool in fact represents an ambitious synthesis of several new 
developments within GSSI. It combines innovations in both hardware and Software.  
 
Hardware 

• lightweight deployment 
o armature 
o antenna 
o backpack 

• small, low power system controller 
o compact user interface 
o easy data manipulation 

• positioning systems 
o Gyro 
o GPS 
o Accelerometers 

Software 
• data compression algorithms,  
• real-time signal and image processing,  

o audio feedback,  
o feature  extraction,  
o target recognition,  
o new graphic data interfaces.  

• leak detection 
 
2 EXPERIMENTAL 
 
HARDWARE 
 
2.1 HARDWARE: LIGHTWEIGHT DEPLOYMENT 
 
A new lightweight antenna was created for this project to fit on the end of a pole that would be 
swept back and forth like a metal detector (Figure 4 and Figure 5). Although the “metal detector” 
design finds application in many geophysical EM and MAG tools, a lightweight antenna on the 
end of a pole that could be swept had not been considered until recently. Since “Hard-hat” 
durability has always be a priority over lightweight antenna designs, this new concept 
represented a real departure from current methods. One challenging task was to turn a 15 pound 
400MHz antenna into one weighting about 2 pounds. 
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AntennaAntenna

   

Figure 4: The antenna is light enough to swing comfortably over the ground. 
 

For this design, the handle and boom is simply a modified metal detector design with a holder 
attached at the end. The antenna slides inside the lightweight holder that doubles as a skid plate. 
On the end of the boom, a pivot secures the basket in such a way that one can adjust the boom 
angle without bending over. 
 

Side View

Antenna

Top View

Antenna

User

Side View

Antenna

Top View

Antenna

User

 

Figure 5: The general deployment concept 

 
The other end of the boom is held either using a standard arm support, or swung from a harness 
or belt like a gas powered brush cutter.  Using the arm support all day is somewhat tiring but 
bearable. 
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The box housing the battery and the radar board, which receives and partially processes the 
antenna signal, is small enough to be worn on a small pack frame or fanny pack. The radar board 
then sends the data out to a PDA for the user interface. 
 
If one were to view this method as simply a new antenna delivery system (like a cart), one might 
start to see the several benefits it offers. 
 

1) This “cart” is extremely portable. The entire unit can collapse into a gym bag and weighs 
less than 15 pounds. This means the user can take the GPR places that would be very 
inconvenient otherwise. Instead of needing to ship the cart, one might simply take it as 
luggage. 

2) The “cart” is very maneuverable, letting the user swing the unit around trees, hydrants 
and utility poles, through high grass, over sloped or bumpy terrain, etc. 

3) The user can walk at any speed, thus setting the density of the survey intuitively. 
4) Unlike a single antenna cart, the user is effectively collecting a swath of 3D data as he 

walks along. 
5) One common challenge associated with identifying pipes using any GPR system, 

involves locating pipes parallel to the direction of travel. Though pipes perpendicular to 
the direction of travel trace out a hyperbola that is easily recognized by visual inspection, 
pipes parallel just look like flat horizontal layers. These pipes are often missed, even 
when a 3D migrated data set is acquired. However, data collected in an arc will trace out 
a hyperbolic shape (or nearly so) when it passes over a pipe, making pipe recognition 
possible. 

 
In sum, the swept concept has several inherent pros and cons over other more conventional GPR 
“carts”: 
 
Pros: 

• Highly portable 
• Surveys in tight spaces, uneven or unstable terrain 
• Resolution can depend on how slow one goes. 
• A swept arc finds pipe hyperbolas regardless of pipe orientation. 
• Could also attach a survey wheel and run a conventional straight line survey. 

Cons: 
• Lightweight sacrifices ruggedness. 
• Portability requires redesigning light antennas  
• Accurate positioning is more complex 
• Portability requires a portable control system (at the expense of functionality). 
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PDA + GPS

Radar Controller

Pivot

PDA + GPS

Radar Controller

Pivot

 

Figure 6: Util-Lite’s component locations. 
 
2.1.1 Antenna Design 
 
This antenna was derived from GSSI’s most successful utility antenna, the 400 MHz design. It is 
of manageable size and can typically penetrate about 2m even in difficult soil conditions. 
However, there is really no reason why several different frequency antennas could not be fit to 
the same device. 
 
Antenna orientation was another point of decision that needs to be made thoughtfully. For metal 
pipes, it is best to have the angle of the dipole antenna cross parallel to a pipe. 
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Figure 7:  (a) parallel polarization   (b) perpendicular-polarization 

The orientation of the antenna dipoles affects the ability to see (a) metal vs. (b) 
gas-filled non-metal pipes (PVC, PE, ceramic etc.). 

 
Multiple antenna polarizations could conceivably be used, including parallel and 
perpendicularly-polarized configurations. Dual-channel systems were considered for this project 
(which would add complexity and cost), but found by experience that the perpendicularly-
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polarized configuration finds both metal and non-metal pipes with reasonable success. In th
case when the signal is very weak, and one knows one is only looking for a metal pipe, one ca
simply rotate the antenna in the cradle to collect in the parallel configuration. 
 

e 
n 

he majority of commercial GPRs use bowtie dipole antennas. For this project slot antennas 

lthough there is room for much improvement, the antenna housing was made exceedingly light 

etal 

any housing ideas were considered. For example, by designing the antenna more like a pillow 

 
 

r 
n 

.2 HARDWARE: THE SYSTEM CONTROLLER 

 new radar controller (SIR-2X) was developed partly with funds provided by this cooperative 
 

pecific improvements and developments on this board include: 
 requirement for an additional 

• ring data with standard 
 

• trolled by any general purpose computer system as a USB 
allel 

• 2MHz, 140% faster than the previous generation’s 
80MHz.  The DSP performance is actually much more improved than that as the input 
and output data flow is now entirely DMA driven and all memory is internal. 

T
were experimented with as well as V-shaped antennas which has some air-launched 
directionality advantages. The traditional design has not yet been improved upon. 
 
A
but rigid using a thin plastic. The final result is still probably overkill, as the cradle should 
provide plenty of protection from damage and abrasion. Inside the housing the antenna is m
and fiberglass and is quite strong. However, it would not survive being run over, as can GSSI’s 
commercial antennas. 
 
M
than a bomb shelter, the antenna and internal electronics could be still protected. The housing 
retains its shape while having a light, flexible shell. With a lighter antenna the nylon skid plate
on the bottom can now be thinner, since it is not forced to endure so much friction. The housing
can be something more akin to fabric than a heavy plastic, reforming its shape after being 
crushed. The internal chambers might be inflatable bladders lined with EM-reflective Myla
sheet or simply pillow foam that returns to its original shape. The electronics can be printed o
the same circuit board on which the antenna pattern is etched. In the end it was kept rather 
uncomplicated, since the weight issues proved not to be as difficult as first anticipated. 
 
2
 
A
agreement. When configured by the custom firmware and driven with the specialized software it
formed the heart of a low cost and low power portable impulse radar system. The performance of 
the SIR2X Radar Board has been proved and refined on the SIR3000 GPR system recently 
introduced commercially by GSSI.   
 
S

• The controller runs from raw battery power and there is no
power supply or supporting circuitry.  This alone results in a 67% reduction in the 
volume of the electronics package over previous generations. 
The board is very low power taking less than 10W while acqui
GPR antennas.  An Ni2020 Lithium-Ion battery pack may run the system for a full day
without recharging.  This is a 68% reduction in power requirement over systems being 
shipped just 1 year ago. 
It was designed to be con
peripheral.  Connection is via a simple USB cable without the need for a massive par
or custom-designed serial link.   
The on-board DSP now runs at 19
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• The controller board weighs about 120gm and the battery required for a full day of 
operation weighs about 550gm for a total weight of about 670gm.  The lightest controll
previously designed by GSSI required a large, lead-acid battery and the system

er 
 weighed 

• 

porated into the GPR in real time 

 
The Sir
compu rface.   The hand held was used for all control and display functions as 

ell as any required data or setup storage.   Since this instrument was not intended as a general-

 peripherals to be located at the antenna. 
• The microcontroller communicates with the radar board over a high speed, bi-directional 

ms 
itches, 

.  (e.g. it 

• 
h voltage pulses.  The older 

igh voltage pulses were only needed when there were long cables from the controller to 

• 
 connections plus 9 to 13 additional 

nes have been used.  The new connection is much lighter and more flexible. 
 
2.3 H
 

or this project to work, positioning must be able to track the fine scale motion of the antenna as 
 a map. Since the data necessary both to locate 

 well as to lo e leaks on a ma nd in order to accurately trigger 

option was rejected 
for reasons given later. 

over 6000gm. This is an over 88% weight reduction.     
The new controller architecture supports a high speed serial link to the antenna 
electronics.  This allows positioning and other peripheral inputs to be located at the 
antenna where they are needed and have their data incor
at the controller. 

2X Board was designed to make a complete radar system using an inexpensive hand-held 
ter for the user inte

w
purpose GPR, the display capabilities of these devices are certainly sufficient for the application.  
The audio capabilities can be used to give auditory feedback to the operator so that he does not 
have to keep his attention on the display.   
 
Major improvements have also been made in the circuitry located at the antenna.  A 
microcontroller has been added to allow for

RS-485 link.  The controller has inputs suitable for multiple positioning syste
(quadrature encoded survey wheels, PWM encoded accelerometers, marker sw
RS232 serial interfaced sensors, etc.).  The controller is fast enough to keep track of these 
positioning inputs and send processed position information to the radar controller
can tell the radar controller to save scans every 1° of travel) 
 
Improvements in this area have also been made in the triggering interface.  Triggering 
signals are now low voltage differential signals instead of hig
h
the antenna and this is not the case in this system. 
 
The antenna and the controller can now be connected with a cable consisting of 4 twisted 
pairs and a single power pair.  In the past 3 coaxial
li

ARDWARE: POSITIONING SYSTEMS 

F
it is swept back and forth, as well as to locate it on
ipes as cat p needs to be generated. Ap

the data collection along an arc, there must be a positioning system that can track the sweep 
angle. A list of the several positioning options that were considered follows: 
 

1.  None at all: This could be achieved were there just an audio feedback signal that 
indicated the location and depth of a target by tones or beeps. This 
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2. Rate Gyro: This option measures angular rate; measuring angle requires an integration, 
which can introduce drift due to temperature and other factors. The gyro could be 
stabilized by performing an initial calibration and then by adding a long high pass filter to 

3. 

since thestated goal was to produce a low-

4. 

 use it for dead 

5. 

6. ptions were also considered, similar to an opti-mouse. It was 

the same drift issues as with the rate gyro. 
 
In the e

eliminate the slow variations that might appear due to temperature fluctuations. The 
result was a stable and repeatable response with drift that was far less than what was 
needed to track angles from sweep to sweep. 
GPS:  A consumer grade GPS makes it easy for the user to track and return to locations if 
spray paint or some other fiduciary marks were not used or wore off. Of course the user 
can have all the accuracy he can afford. But 
cost system, a consumer grade GPS had to suffice.  One that fits directly on the PDA 
seemed the simplest option. This not only simplifies the interface, but it also allows for 
an antenna extension if needed. The Fortuna “Xtrack” seemed to have the best 
combination of price, external control and reliability. It has worked fine. 
Accelerometers: These are built into the antenna but were not actually used due to their 
high noise response. Initially, there were great plans to use the accelerometers as a tool to 
correct for both gyro drift and GPS discontinuities. It would be great to
reckoning indoors where the GPS would not work. And knowing the literature from the 
rate gyro, and having used GPS extensively in other applications, it was known that a 
Kalman Filtered synthesis of the three positioning systems was achievable. But since the 
accelerometers proved to be much less accurate than either the GPS or the gyro, it 
became clear that they would either not help, or actually degrade the results of both. A 
feasible solution would require using a military grade inertial system that was out of the 
scope of this project. 
Attaching a survey wheel to the antenna was rejected due to slippage errors and awkward 
use. 
Camera subtraction o
quickly realized that even despite the problems of lenses and dust, one would still be left 
with 

nd the one-axis rate gyro and the GPS were selected as the best combination. 
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SOFTWARE 
 
Much of the software development for this project represents a new direction for GSSI on 
several fronts. GSSI’s strength has always been in producing clean, quiet data, but data 
interpretation has generally been avoided. 
 
Conventionally, after time-consuming “migration” processing, and aligning several parallel 
profiles, a rather pleasing map of pipes in 3D can be produced. Now much effort has been 
invested in trying to get the computer to find these pipes for us, without having to “migrate” and 
without needing to store and manage the large data set. For this project the goal was not only to 
extract target information in the data, but also to do it automatically and in real-time. This can 
now be done with sufficient precision to track gas lines in almost any terrain.  Here’s how  
 
2.4 SOFTWARE: DATA COMPRESSION 
 
The first step in achieving this goal was data compression. Data 
compression was the key not only to making things fast for real-time 
processing, but also to identifying (and then extracting) important features in 
the data. Basically, this step involves keeping only the data essential to good 
decision-making. Of the many published techniques for doing this, a zero-
crossing method was chosen. Although not a concern in this case, all 
methods compromise the ability to perfectly reconstruct the original 
waveform.  
 
2.4.1 Zero Crossings 
 
If swung 180 degrees across the body, collecting a scan every degree would 
collect 180 scans. Instead of storing all the points down the scan, only the 
position where the signal crosses zero along with its peak-to-peak amplitude 
is kept. This buys an initial data reduction of a factor of ten. 
 
2.4.2 Feature Extraction 
 
This simplification is used to track coherent lines from scan to scan looking for features, further 
compressing the data. This fairly complex algorithm predicts feature trajectories and gets the 
more established features to compete with each other for new zero crossings from each incoming 
scan. One can then keep only the “interesting” features and throw out most of the “uninteresting” 
data by looking for clear directions and telltale shapes.  
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Figure 8: Features in the data can be found by stacking scans next to 

each other and following continuities. Incoherent information 
can be filtered out. 

 
This was the core engine behind most of the processing for this project including the tone 
generation scheme that ended up not being using. NOTE: Tone generation over pipes is “feature” 
extraction, but it relies on the user’s ear to do the extracting. More on this in Section 3.2. 
  
2.4.3 Target Recognition 
 
Pipes produce characteristic hyperbolic patterns (Figure 8), easily recognized by eye in a GPR 
image, but recognized by computer with some difficulty. There are a few ways to do it 
 
For example, once peaks in the features are identified, one can use amplitude information to 
recognize symmetric falloff on either side of a peak. One can use shape to evaluate hyperbolic 
similarity on either side of a peak by plotting x2 vs t2 and doing a linear least square fit: ideally 
two straight lines of equal slope. Or one could approximate the hyperbolic shape by fitting a 
parabola on either side of the apex. These and other methods, like using shape kernels or 
modified Hough transforms, etc., can serve to isolate a target hyperbola.  
 
Over the past several years of development all combinations of these have been tried; the 
algorithm continues to improve. More and more, target recognition is starting to match visual 
perception (weak targets have low confidence, strong targets show high confidence). Figure 9 
shows just one sweep of data. Targets are color-coded by confidence (low = gray, green, blue, 
red = high), which, for the most part, match visual perception. Notice that even very faint, but 
well shaped targets can score well, while even strong targets that crisscross can be missed 
(bottom left). Generally, even in quite complex environments, the algorithm confidently locates 
the obvious targets and tentatively locates the more obscure targets. On close examination the 
“false positives” are either low confidence or, on closer examination, really are targets (rocks or 
debris etc.) 

   DE-FC26-01NT41317 
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Figure 9: Automatic Feature Recognition example. The red dots mean the target was found with a high 
degree of confidence (then blue, then green then gray). 

 
2.4.4 Post-Processed Auto Target Recognition 
 
2.5 POST-PROCESSED DISPLAY OPTIONS 
 
Of course most algorithm development was handled inside our RADAN software package, since 
many development tools are easily available. A few tools in the RADAN software application 
bear mention, especially since they are important both for data visualization and for leak 
analysis. 
 
2.5.1 3D Frame Display 
 
Pipe output from target recognition can be displayed in GSSI’s 3D Quickdraw program inside 
RADAN. The data from Util-Lite can also be displayed in 2D.  
 
When several parallel sweeps of data are stacked together, one can assemble a 3D picture of the 
pipes in a test pit. Figure 10 shows the results in 3D. Generally the red and blue dots mark the 
pipe locations.   Most of the green marks, on re-examination show clear targets that could be 
rocks or other debris in the pit. The algorithm has been run on scores of other data sets, both 
shallow and deep, and it seems to hold up well. However, noisy environments may require the 
addition of a “sensitivity knob” to squelch false positives.   
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Figure 10: The results of Automatic Hyperbola Recognition shows a strong correlation with the pipes visible 
in the 3D data.   

 
At least in this example, the leap from Feature Extraction to Target Recognition is a small one. 
Figure 11shows an estimate of pipe lengths, depths and dip angles based on the results from 
connected dots. The data shown underneath has been migrated: not the sort of information one 
could get in real time. The raw data would actually reveal very little in 3D, still less in 2D. 
 

 
Figure 11 Pipes in 3D based on the features found in Figure 10 

 
One of the goals for future work is to incorporate 3D pipe following into the Util-Lite design so 
that pipes are recognized from one sweep to the next. 
 
 
 
 

   DE-FC26-01NT41317 
 

16



2.5.2 Interactive 3D 
 
A powerful target display and editing routine within RADAN called Interactive 3D Interpretation 
is now available, into which target locating results get displayed for editing and cleanup (Figure 
12).  This tool has been indispensable for the development of this prototype and will continue to 
be important, since now it ca be used to display data as it would appear on the GPS map.  
  
 

 
Figure 12: Interactive 3D presentation, showing data in O-scope, LineScan, DepthScan and 3D views. This 
later version shows the pipes rendered according to their depths based on the average velocity that was 
determined by auto target.  

 
Development of 3D data display is ongoing and will hopefully be incorporated in the real time 
analysis of leaks.  
 
2.6 SOFTWARE: REAL-TIME SIGNAL AND IMAGE PROCESSING 
 
Code that was developed in RADAN was then successfully ported into the Util-Lite for real-time 
target recognition. For the real-time Util-Lite application, the visual cues described above were 
changed.  Recognition confidence was conveyed as dot size instead of color, since colors on a 
small screen are hard to see. A square (rather than a dot) is displayed to avoid misconstruing size 
for pipe diameter, which is not determined. 
 
While one collects data by sweeping in one direction, the target recognition results from the 
previous sweep are being displayed as the cursor sweeps by. So the recognition is actually 
always one sweep behind. In practice this delay is inconsequential, since one can always swing 
the cursor back to pinpoint the target location.  
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In order to make this system simple to use, most decisions regarding setup and image 
interpretation are being done automatically. Ideally one would want the user just to turn it on and 
start following pipes and locating leaks. To get there, one needs to make many complex 
decisions for them and then to present the information in a manner can be used and understood. 
 
There are several ways this can be done. Two were implemented: an Audio feedback method and 
a graphical feedback option. Although for this prototype it was decided in favor of the graphical 
feedback method, the audio feedback tool allows for great simplification and truly real-time 
operation. 
 
2.6.1 Audio Feedback 
 
This implementation creates an audio tone that rises and falls based on the proximity and depth 
of a target. When the antenna sweeps over a pipe, a hyperbolic pattern appears in GPR data. 
Using data compression schemes to squelch flat lines and clutter, one can accentuate these rising 
and falling edges and convert them to sound. By correlating sound frequency with depth, shallow 
pipes make high-pitched tones and deeper pipes make deeper tones. As a target hyperbola is 
detected on the way up, the tone starts to rise and then fall as the signal descends on the other 
side. The peak of a hyperbola can easily be heard as the highest pitch and the location marked on 
the ground. The result (Figure 13) is an obvious pattern that can be used (either visually or audibly 
to pinpoint the location and the approximate depth of pipe in real-time.  
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Figure 13: Five shallow pipes and three deeper pipes with places where tones are generated marked in yellow. 
All the major targets are audibly identifiable.  

  
In this way the user can locate and follow a pipe in real-time. Such a simple method obviates the 
need for a complex visual user interface; it requires no positioning sensors and relieves the user 
of having to do any image interpretation. One just sweeps back and forth, listening for the top of 
the pipe and then mark its location and relative depth with spray paint. 
 
But as a data extraction tool it has several shortcomings. As one might imagine, the important 
part of the algorithm is what one doesn’t hear. Squelching sound and producing silence in heavy 
regions of clutter is key, especially since no forward information is used to make volume 
determinations.  Figure 14 shows a more difficult example where there are many things that start 
to look hyperbolic and then fade out. Other difficult problems are found in regions where pipes 
are located close together or cross. It is assumed that any answers derived will be based on 
repeated sweeps over the same region, as an aid to interpretation. 
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Figure 14: Examples of clutter generating false tones in the lower right side of the image. Tones are correctly 
generated for all but one of the pipes, but other clutter creates distracting noises 

 
However, a tone is only helpful in real time; it is not an option in noisy environments, nor for the 
tone deaf, nor if one wants to be able to present or report results, or show someone where to dig 
on a map. What if one wants a more accurate depth estimate? For this one needs a more complex 
system with positioning information, soil velocity analysis, and graphical output. More on this 
later. In the end, it was decided that a more robust and useful interface could be created using a 
visual display for feedback, by extracting the features automatically, instead of relying on the 
user’s ear to do the job. 
 
2.6.2 Visual Feedback 
 
The final implementation presents two distinct visual feedback displays, split onto the same 
screen. The top of the screen shows a cursor that sweeps in concert with the antenna. If a target is 
found, a red dot appears at the right depth and at the angular location at which it was found. The 
size of the dot corresponds to one’s confidence that it is in fact a target.  
 
The bottom of the split screen shows the track log from the GPS. When a confident target is 
located, a red dot appears in this screen. This allows the user to get a more general feel both for 
how well the area was covered and for what the general target pattern looks like. 
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sweep cursor

Weak target

More confident target
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Weak target

More confident target

GPS track log

 
Figure 15:The two display screens. The top screen shows the target locations and 
depths found during the sweep. The bottom screen shows a cookie trail of your GPS 
track log along with the locations of significant targets found along the way. 

 
The red square targets are placed so that the top of the square matches the top of the apex of the 
hyperbola. In Figure 15 the actual results of auto target recognition are shown together with an 
image of what would get displayed at the top of the screen of the PDA. The green dot represents 
a recognition that is more confident than the others. The grey dots fall below the threshold and 
are not displayed. A strong shape beneath the pipe is not recognized because the shape is not 
sufficiently hyperbolic to qualify, whereas more subtle shapes did. In the end the pipe was 
correctly identified and could easily be followed along its course. 
 
2.6.3 Target Locating 
 
To locate the target spatially, simply move the antenna back to place the cursor back over the red 
dot. Then to find a pipe, repeat this process several times along a line. Placing flags or marking 
the ground with paint will indicate the location of the pipe. 
 
With real-time target recognition, one can locate by aligning the cursor with the red dot. One 
might also beep a tone directly over a target, or placing a mark physically on the ground as 
discussed earlier. Spray paint or powder or some other substance can be placed on the ground 
either by pulling a trigger, or automatically. Since GPR also can give information about target 
depth and even target material type, the marks could be color-coded. These marking methods are 
not implemented. 
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(a) (b) (c)
 

Figure 16:These pictures compare the actual data (a and b) with a stretched view of what the 
screen would display (c). Auto target recognition found six targets (b), but five were rejected.  

 
2.7 SOFTWARE: THE USER INTERFACE 
 
A Toshiba Pocket PC e800F was chosen as the interface controller, because of its superior 
qualities in screen resolution, speed and connectivity. In bright sunlight, the screen is readable 
only at certain angles and pushing the touchpad with the stylus can be tedious, but otherwise it is 
quite adequate to the task. 

     
Figure 17: The Pocket PC is a Toshiba e800 
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Attempts were made to limit the screens necessary for basic operation as much as possible. It got 
pared down to four (and could probably be fewer) by stuffing the more complex functionality 
into several other screens. For most pipe location applications the flow (indicated in red) goes 
like this:   
 

1) Running the application opens the main menu 
2) Hit positioning. 
3) Hit calibrate, then ok. 
4) Hit system init, then run. 
5) Start swinging. 
 

 
The full description of the Menus and options is included in Appendix B.   
 
Ideally one would want to paint a picture on the screen (Figure 18) in such a way that the 
subsurface “story” becomes increasingly clear. 

 

Y
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Figure 18: Conceptual idea for displaying data in 3D. 
 
3D displays of the data are constantly being developed, so that the trail of data can be shown. 
Important work continues to be done on the post-processed/desktop level, since the PDA 
processing power is not yet up to the job. For now we must content ourselves with dots on a GPS 
map. 
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2.8 LEAK DETECTION  
 
Another important aspect of the signal-processing task has been 
Leak Detection. This section describes both the algorithm as well 
as efforts for generating and detecting leaks underground. It should 
be made clear that the implementation of these algorithms is not 
real-time, but rather operated on post-processed data. 
 
 
2.8.1 The Theory 
 
When a natural gas pipe leaks, some part of the soil overburden above the pipe should become 
perfused. Depending on factors like leak rate, soil porosity and water saturation, this soil should 
become dried out. Typically in leaks beneath grassy soil one can see soil cracking due to dryness 
as well as a large brown spot where the grass has been asphyxiated.  
 
It turns out that GPR is very sensitive to changes in soil moisture and has been shown to detect 
subtle differences with high accuracy. When a soil gets dried out above a pipe, one should be 
able to observe four changes in the signal.  
 

• The decrease in soil conductivity should improve the penetration depth of the radar 
signal. Usually conductivity changes are no friend to GPR since they tend to ruin signal 
quality and depth penetration. But in this case, one can use this information by constantly 
observing changes in depth penetration. This could be made especially powerful if a 
conductivity survey, performed earlier over the same region, could be compared with the 
current survey. Any changes would be immediately apparent. 

• The conductivity decrease should increase refection strength of the pipe since more 
signal is able to actually get to the pipe. 

• The decrease in moisture will also lower the bulk dielectric properties which will shorten 
the travel time of the reflection off the pipe. This will cause a sudden and unnatural pull-
up of the apparent depth. 

• Since the velocity of the soil above the pipe will increase, the shape of the hyperbola that 
is created over the pipe should also increase. 

 
2.8.1.1 Max Depth Estimation 
 
Since noise comes in different forms, the maximum signal depth is estimated two ways: 

 
a) phase flips per interval (Vertical) 
b) similarity test with previous scan. (Horizontal) 
 

The first method just looks vertically at the data quality down the scan, while the second looks 
horizontally at signal stability from scan to scan.  
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The first method looks down each scan, counting the number of times the signal changes 
direction. As the signal weakens with depth, high-frequency noise starts to get added to the 
signal, making it look “spikey”. This is an early warning that the signal is starting to degrade. 
 
The second method looks between scans, subtracting two scans and looking for coherence. With 
good signal, adjacent parts of scans should look similar, while the noisy parts of the scans will 
show no correlation from scan to scan.   
 
The example below (Figure 19) shows the difference between the two noise measures.  Visual 
inspection shows that not only are they are both generally correct in identifying the maximum 
penetration depth, but also they tend to compensate for each other. Visual inspection confirms 
that the minimum of the two is roughly where the true transition lies. 
 

 
Figure 19: Max Penetration depth measured two different ways. The Vertical method in red (upper) and the 
horizontal method in green (lower). 

  
There are some situations where some signal processing will need to be performed before a 
reliable depth is returned. Data with undue ringing looks like (and is in fact) “signal”, but should 
be discounted somehow, since it is not useful information. This could be performed using 
“predictive deconvolution” processing to remove the ringing multiples. Conceivably this 
processing could be done in real time as well. After this the Max Depth scheme (the horizontal 
part) works reasonably well (Figure 20). 
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(a)

(b)

(a)

(b)
 

Figure 20: Max Penetration depth: (a) Shows results with raw data with a lot of ringing. Neither method is 
able to get past the ringing to find the maximum penetration depth. (b) Shows results with the data after a 
deconvolution step to remove the ringing.  The Horizontal detection method finds the noise floor reasonably 
well, while the Vertical method still believes there is plenty of signal at the bottom of the image. 

 
The theory was also nicely confirmed when a 3D data set over one of GSSI’s test pits was 
collected (Figure 21). In the region where the pit had been dug and then backfilled with nice 
sand, the penetration depth was clearly much better than on either side through the native soil. 
This basically proved the concept.  
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Test Pit BoundariesTest Pit BoundariesTest Pit Boundaries

 
Figure 21: These graphs show the difference in depth penetration as 14 survey profiles went across the test 
pit. The clean sand in the pit clearly allows better signal penetration, lowering the Max Depth Estimation. 
 
2.8.1.2 Leak Testing 
 
But one important aspect of proving this algorithm is the capability of actually testing the 
concept in soils with pipes that actually have leaks. Extensive and ultimately futile lengths were 
taken to simulate this process before giving up and going to gas companies to perform tests in 
real situations. And whether it works in real situations has yet to be proved. 

 
2.8.1.2.1 LEAK SIMULATIONS 
 
Two leak test areas were created. The first involved drilling five 7m long 0.5 inch schedule 80 
npt pipes horizontally under a road. This was done with a jackhammer and then hooked up to an 
air compressor once in place. In three of them the air came out the end of the pipe, while in the 
other two the tip was sealed and holes were drilled part way along the pipe. Horizontal drilling 
can be hard to control the depth of the tip. For three of the pipes, the rock ledge underneath 
clearly served to guide the tip close beneath the asphalt and limit their effectiveness for this 
experiment. The other two stayed deep: one 1m deep, the other 0.5m deep. 
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50 foot trench 6”pipe
3’ deep clay backfill

20 foot 1”pipes 1’ to 3’ deep
Horizontally drilled in sand

50 foot trench 6”pipe
3’ deep clay backfill

20 foot 1”pipes 1’ to 3’ deep
Horizontally drilled in sand

 
Figure 22 Leak Test pit layout 

 
Then one end of a pipe was hooked to an air compressor and which forced air in at one cubic 
foot per minute. This is admittedly much higher than the 10 CFH that is more typical of a real 
gas leak, however, a gauge that went any lower than 1CFM could not be found. 
 
It was then quickly learned that dried air was required, since the compressed air would expand 
and actually increase the soil moisture as it expanded out of the end of the pipe. An industrial 
drier was used and then an evaporator to get the humidity of the air going in to about 20%. 
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3 RESULTS 
 
A development project like this does not divide cleanly between experimental procedures and 
results. In fact many of the “results” of development have already been presented, in the 
significant improvements and innovations that have been made in the areas of auto target 
recognition, hardware design and user interface design. However, for the purposes of this report 
we will simply define the results as: does the tool locate pipe and can it find leaks. 
  
3.1 TARGET LOCATION RESULTS 
 
3.2 LEAK SIMULATION RESULTS 
 

Throughout all of the tests local changes in conductivity were sought by mapping the 
Max Depth in 3D … to no avail. After hours and even weeks, any change in soil conductivity 
using this method (Figure 23) could not be detected. 

 

3Hrs   (Green)
18Hrs (Yellow)
27Hrs (Purple)

3Hrs   (Green)
18Hrs (Yellow)
27Hrs (Purple)

 
Figure 23: Leak Test results show no max depth improvement after 27 hours. This was carried on for 
several weeks with no change. 

 
It was thought, based on the PECO report1, that the sandy soils might be too porous to actually 
hold the dry gas pocket long enough to measure. So then a 18m long 1m deep trench was dug 
with a back hoe. 17m of 10cm diam. pipe was buried under 1m of dense clay. The open end of 

                                                           
1 Graf F.L., “Using ground-penetrating radar to pinpoint pipeline leaks”, Materials Performance, 1990, Vol. 29, No. 

4, p. 27-29. 
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an air hose was buried just on top of the pipe to simulate a leak. After tamping it down and 
measuring over several weeks, no change in the radar signature was observed. 
 
Next a Mr. Fred Graf (retired) was located who originally did the study for Philadelphia Electric 
Co. back in 1985. His assurance was not only that the results he saw twenty years ago were 
robust and repeatable2, but also that the current methods could not work since the air would 
never be as dry as the natural gas in a pipeline.  He suggested either pumping propane (infeasible 
for safety reasons) or actually surveying real leaks sites in the field.  The results from this are 
presented next. 
 
3.3 FIELD TESTS 
 
Two gas companies very graciously allowed the Util-Lite to be tested in the real world. In these 
tests we surveyed about seven different gas lines looking for leaks and seeing how good the tool 
was at locating and following pipes. All of the pipes that were tracked were metal 10cm (4”) gas 
lines whose depths ranged from 0 to 3m deep. 
 
3.3.1 Columbia Gas: Waynesburg, PA 
 
In Waynesburg, PA, representatives from the Columbia Gas Company presented four leak sites 
to test the equipment. One, near a county jail, had a steeply sloped section with high grass right 
in the critical region which made leak detection nearly impossible. The antenna could not swing 
along the ground and so the amplitude and depth measures that were needed for leak detection 
could not be done.  However, as a pipe locator, Util-Lite worked very well. 
 

 
Figure 24: The first location was not conducive to making a good leak measurement. 

                                                           
2 (http://www.geo-graf.com/leaks-ch.htm) 
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As opposed to the conventional GPR, Util-Lite could handle the high grass and steep slopes 
while still being able to follow the path of the pipe. The 10 cm (4”) gas line was tracked for 
several hundred yards to the next building. Since the penetration depth was set to 3m, a section 
of pipe was missed that went to 3.75m  (about 10 feet) as measured by the induction device. 4m 
is the operating range of the induction device. 
 
(For the specifications of the pipe locator see: www.metrotech.com/pdt.asp?productselect=61) 
 
Util-Lite’s  locating accuracy was between 0 to 30 cm compared to the Metrotech. Sometimes it 
was right on; but sometimes the return sweeping erased the red dot, making it hard to guess the 
correct location of the pipe. This accounted for the 30cm errors, something easily fixed in 
software.  Otherwise the Util-Lite was quite accurate as compared to the inductive locator. 
 
As for repeatability results, that depended on the soil types and depths that were encountered. In 
good soil, the pipe would be recognized on nearly every sweep (>90%). In poor conditions, even 
a hit rate of 25% meant that the pipe could be tracked. One of the advantages of the system if 
that, when the trail is lost, the user can keep sweeping over the same area until the trail is picked 
up again. So even a poor result still gets the job done. 
 
The system worked so well that it was even correctly locating the sacrificial anodes that are 
placed a few feet to one side of the pipe to fight corrosion. Every 5 meters or so a short line 
would branch off from the pipe. This surprise was good confirmation that the unit was 
responding  correctly and robustly to complex scenarios. 
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Figure 25: Yellow flags indicate Util-Lite location points. The orange 
blazes indicate confirmation by an induction locator. 

 
The second site was in a pasture, where there were clearly two leaks. The target location worked 
very well again, although occasionally Util-Lite’s position was off by about 30cm. This probably 
had more to do with the inability to reposition the cursor in software than any recognition errors. 
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Figure 26: A production line. Util-Lite could locate the line. At times its reported 
position was off by about 30cm. 

 

The third site took place  across a cow pasture. The leak results at this location are 
intriguing. The soil clearly showed the general location of a gas leak. The Util-lite was 
deployed to follow the dipping pipe. There is a pull up in the data at the likely spot. This 
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pull-up in four targets can be seen in 

 

Figure 27. It is also true that there is the expected velocity increase on two of the four target 
hyperbolas 
 

 

Figure 27: Possible leak area along a dipping pipe. Note the velocity increase in the central target. 
However, also note no drop in the Max Depth shown in red. 
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 However, one should also see an amplitude and velocity increase as well as an increase in the 
Max Depth.  These did not all seem to happen together. Figure 28 shows the velocities and 
reflection amplitudes as circles around each target.  
 

Leak Site?Leak Site?

 
Figure 28: Plots of the change in Velocity (Red) and Amplitude (Blue). The graphs show that for the 
four points in question, there is little to distinguish our suspected location with the rest of the region. 

 
While there are interesting results in the data, the results from the area of interest could not be 
used to separate the leak location from the rest. Therefore, successful location of a leak cannot be 
established. 
 
The last location  was pretty much a complete bust, since the 4m pipe depth was deeper than 
what the radar could penetrate in the riverine clay soil.  
 
3.3.1.1.1 BAY STATE GAS: METHUEN/ LAWRENCE 
 
3.3.1.1.1.1 Delmont St. 
 
The next site, thanks to Bay State Gas was a gas line along Delmont St. in Methuen, MA. Since 
this was road data, it was a much more controllable environment. The survey was performed 
with both the Utility Scanner and the Util-Lite, yielding some excellent data comparisons. 
 
The first result (Figure 29) was that one can see the nearly exact correlation between both the 
Utility Scan system and the Util-Lite, even though the data acquisition schemes are 
perpendicular. They both could follow the pipe along its course down the road. The target 
recognition was perhaps 90%: plenty for locating and following the pipe in real time. Many other 
targets: sewer lines, drainage culverts and laterals where also clearly evident in both data sets. 
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Figure 29: Pipe locating and looking for leaks. 
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Figure 30: Three possible leak sites are circled in yellow 
 
As far as leaks go, three places are suspected (indicated by yellow circles Figure 30) where the 
pipe depth was clearly and unnaturally higher than it should be. Two of these happen to coincide 
with gas odor.  
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Figure 31: Utility Scan close up view of the 
suspected leak zone. Note the sudden pull up in the 
pipe depth. 

 
One location, Figure 31 and Figure 32 show that that max depth and amplitude variations, though 
too faint to make a positive diagnosis, at least trend in the proper direction to support this theory. 
 

Util-Lite
Depths and
Amplitudes

Possible leak point

Util-Lite
Depths and
Amplitudes

Possible leak point

 
Figure 32: Util-Lite locates the pipe crossing 
depths, the amplitude variations as well as the 
velocity changes at each location. 
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One trench was dug and a leak was found and repaired directly under the patch indicated as a 
yellow square on the far right side of Figure 30.  
 
Since results await confirmation by digging, nothing concrete can be said about the tool’s 
abilities as a leak detector.  
 
3.3.1.1.1.2 Sheridan Rd., Andover, MA  
 
The last site was in a quiet residential street with an erratically dipping gas line. 
 

 
Figure 33: Possible leak locations along the pipe using the Utility Scan 

 
In this soil the Util-Lite located the pipe in somewhat spectacular fashion. Each sweep produced 
a high confidence return until the very end, when the signal started to fade. The pipe depths and 
the soil changes at the bottom of the hill (on the right side of Figure 33) started to obscure the pipe. 
This was also the location of repeated patching, making the disturbed soils difficult to interpret.  
 
Five locations have been indicated as possible regions where the soil has dried out above the gas 
pipe. This bears little comment until the locations of the leaks can be positively identified. 
 
4 CONCLUSIONS 
 
Through the support of the DOE, GSSI has developed a prototype of a new kind of GPR system 
that is light and portable and simple to use. It uses innovative pattern recognition techniques to 
automatically locate and track pipes and other underground targets in real-time as one walks 
along. It is designed to locate pipes of almost any material type: metal, PVC plastic, concrete etc.  
 
The concept required a completely new lightweight antenna with a built in gyro to sense the 
angular position of the head. The many benefits of such portability include the ability to 
negotiate otherwise “hostile” terrain: high grass, tree roots, parking meters, many trees and 
narrow passages. 
 
The system is designed to pinpoint the location of a target as the unit is swept back and forth in 
front of the slowly walking user. Dots appear on the screen that correspond to the target position 
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along the sweep. These dots appear at the proper depth. The dot size corresponds to recognition 
confidence: small means low confidence, large means high confidence. The lower part of the 
screen displays the GPS position and track as the user walks around. The highly confident target 
dots appear on this screen as well so that the user can start to sweep out a general layout map of 
the utilities and their orientations. 
 
In general the location accuracy was between 50% and 90%, where each sweep might produce a 
target recognition with varying degrees of confidence. In “good” soils with a shallow pipe, a 
high confidence recognition with each sweep was virtually assured (90%). Poorer soils and 
deeper pipes returned recognitions with weaker confidence. At the point where the recognition 
return was about 25%, then a pipe could no longer be tracked using this device. 
 
It is also designed to collect the data needed to locate leaks in gas lines.  Although the results are 
still very much inconclusive, the data and past research in the 1980s suggest that leaks can be 
found using this device. 
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5 REFERNCES 
 
Only a  small handful of papers has been written, reporting results of GPR’s effectiveness as a 
tool for detecting leaks in utility pipes. Over the last 20 years, several important tests have been 
conducted mapping controlled releases of fluids in test pits using GPR. (DNAPL and LNAPL 
releases for example (Sneddon, 2000)). These confirm GPR’s sensitivity to subtle changes in soil 
moisture. Many other experiments have been reported under more realistic conditions where a 
pipe is actually leaking and the leak in need of detection. (Hunaidi, 1998.) Some have noted the 
difficulty of GPR in detecting these changes in wet/clay soils. Some of the following references 
might be helpful. 
 
The only known prior study for detecting gas leaks with GPR was performed by GSSI in 
collaboration with PECO in the mid eighties by Mr. Fred Graf. His correspondence has been 
very helpful in the development of this project. 
 
Graf F.L., “Using ground-penetrating radar to pinpoint pipeline leaks”, Materials Performance, 1990, Vol. 29, No. 4, 

p. 27-29. 
Carlson B. N., “Selection and use of pipeline leak detection methods for liability management into the 21 st 

century”, Pipeline Infrastructure II, Proceedings of the International Conference, ASCE, 1993 
Farmer E., Kohlrust R., Myers G., Verduzco G., “Leak detection tool undergoes field tests”, Oil and Gas 

Journal,December 1988 
Hunaidi, O, Giamou, P., GPR for Detection of Leaks in Buried Plastic Water Distribution Pipes, Seventh 

International Conference on Ground-Penetrating Radar, Lawrence Kansas, USA, 27-30 May 1998. 
Sneddon, K. W., Olhoeft, G. R., and Powers, M. H., 2000, Determining and mapping DNAPL 

saturation values from noninvasive GPR measurements: in Proc.of SAGEEP 
2000, 21-25 February 2000, Arlington, VA, M.H. Powers, A-B. Ibrahim, and L. 
Cramer, eds., EEGS, Wheat Ridge, CO, p. 293-302. (http://www.g-p-
r.com/sageep00.PDF) 

 
Links on leak detection: 
 
www.geo-graf.com/leaks-ch.htm
http://www.epri.com/newsletter.asp?issueid=5353&marketnid=8
http://www.geog.leeds.ac.uk/people/e.obrien/research.html
http://www.kcl.ac.uk/kis/schools/hums/geog/phdcharl.htm
www.geophysik.uni-kiel.de/itrinks/ABSTRACT/Abstract.html  
www.st-and.ac.uk/~www_sgg/personal/crblink/web/GPRpipe.pdf  
http://www.marrserv.com/detsol/water.htm
 
http://www.nrc.ca/irc/leak/leakdetect.html
http://www.awwa.org/journal/j200es2.htm
http://www.awwarf.com/exsums/90770.htm
 
http://www.nrc.ca/irc/fulltext/nrcc42068.pdf
http://bigisland.ttclients.com/frtr/pdf/13_wurtsmi.PDF
http://www.cssip.uq.edu.au/gpr2000/abstracts/king01.html
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http://www.awwarf.com/exsums/90770.htm
http://www.nrc.ca/irc/fulltext/nrcc42068.pdf
http://bigisland.ttclients.com/frtr/pdf/13_wurtsmi.PDF
http://www.cssip.uq.edu.au/gpr2000/abstracts/king01.html


 
 

6 APPENDIX A: PRIOR ART 
 
6.1 ELECTRONIC PIPE DETECTION METHODS 
 
There is a limited arsenal of tools available for pipe detection. However, the diversity of 
techniques shows that each has advantages and shortcomings. For example, only GPR can claim 
to reliably detect non-metallic pipes, but may fail to detect pipes in some soils. The main 
categories of pipe detection tools in common use are summarized below. 
 
6.1.1 Pulsed Induction 
Pulsed Induction methods detect pipes by generating a displacement current at the surface and 
trying to detect eddy currents induced in a metal object underneath. This is the technique used in 
most standard metal detectors3. Pulsed Induction equipment is used generally four different ways 
depending on the application: as an inductive locator, an inductive tracer, a conductive tracer, or 
as a passive receiver. 4 
 
6.1.1.1 Inductive Line Location 

One positions the Transmitter Box in front, the Receiver Box behind. By walking a grid 
pattern, one can discover the location of buried metallic objects, with a signal tone 
indicating their locations. Marking the pavement with chalk reveals a pattern that shows 
the location of the underground objects.  

6.1.1.2 Inductive Line Tracer 
When one point of an underground linear conductor (such as a pipe or cable) is known, 
the transmitter box can be placed over it while the user swings the receiver box around in 
either direction, listening for the audio signal tone. As one walks away from the 
transmitter box tracing farther down the line, the transmitter signal will become faint. The 
transmitter box can then be moved closer so that tracing can continue to the end of the 
line, or two operators can walk together.  
 

6.1.1.3 Conductive Line Tracer 
This is the preferred method of tracing. If one can make electrical contact with a 
conductive pipe, a signal can be transmitted along it. One can then walk along the 
ground, following the pipe. This would typically involve following a line from the 
basement of a house.  Plastic pipe is now usually laid with an embedded metal tape or a 
tracer wire alongside it to allow tracer detection. Otherwise a plumber’s snake can be 
used. 

 
6.1.1.4 Passive Line Tracer 

This mode relies on a power line to supply the transmission signal.  For example, with the 
receiver tuned to receive 60Hz, the antennas will be sensitive to signals given off by 
buried power lines. 

 

                                                           
3 a simple tutorial is provided at http://www.protovale.co.uk/abtpi.html
4 http://www.fisherlab.com/1_Utility/HTML_Pages/tw8800.asp 

   DE-FC26-01NT41317 
 

1

http://www.protovale.co.uk/abtpi.html


 
High-end units measure depth using two coils separated some distance, so that the signal return 
from the pipe can be compared. The accuracy is reportedly quite good (<10%) under ideal 
conditions.  However, depth estimates are thrown off by several factors: poor induction by the 
transmitter, poor signal strength at the receiver, adjacent utilities or Ts or elbows, and soil that is 
too dry or overly saturated.5 6  Another shortcoming of these systems has to do with detecting 
large diameter pipes (> 24”), since the signal gets diffused away. Following pipes that are close 
together is also difficult, as well as tracing pipes that have gasketed joints that interrupt signal 
conduction. Power line interference can also interfere with the signal. 
 
6.1.2 Magnetic Locators 
These devices take several forms, all of which rely on measuring changes in an induced magnetic 
field to detect the presence of a ferromagnetic object. They locate buried ferrous objects while 
rejecting non-magnetic objects such as aluminum cans and bottle caps.  
 
But they are especially useful in detecting valves and junction boxes associated with metal lines, 
since these are generally undetectable with the pulsed induction pipe locators. 
 
Cast-iron or steel pipe laid end to end will produce a strong signal to the magnetic locators at 
each joint — even if the pipes are welded together – since these devices are most sensitive at the 
ends of magnetic objects.7  
 
6.1.3 EM Locators 
Basically the same as magnetic locators, EM locators use more sophisticated processing.  They 
typically have the transmit and receive magnetic coils separated by distances of up to several 
meters, whereas the magnetic locators have them co-located.  The larger separation means that 
deeper objects may be detected, although at a loss of spatial resolution.  The EM locators may 
use pulses, for a transient time domain solution, or they may use a sinusoidal wave.  This can be 
either a fixed frequency, or multiple variable frequencies such as GSSI’s GEM-300.8   
 
6.1.4 Resistivity Methods 
Resistivity locators have been used for pipe location, but the method is generally cumbersome 
and time consuming, often requiring several probes drilled into the ground.9  
 
6.1.5 GPR Pipe Detection  
GPR can accurately pinpoint buried pipeline leaks without digging. The leaking substances can 
be ‘seen’ at the source by the radar via the changes in the surrounding soil's electrical 
parameters. A handful of papers has recently been written, reporting results of GPR’s 

                                                           
5 http://www.fisherlab.com/Operation_Man/TW-8800.pdf 
6 http://www.radiodetection.com/theorybook/html/theory2_10.html 
7 http://www.sslocators.com/ 
8 http://www.geophysical.com/ or http://www.geonics.com/em31.html 
9 see for example: http://www.agiusa.com/brochure_sewer_pipe.shtml

http://home.intekom.com/SpectralGeophysics/Pipe.html
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effectiveness as a tool for detecting leaks in utility pipes.10 Over the last 20 years, several 
important tests have been conducted mapping controlled releases of fluids in test pits using 
GPR.11  These confirm GPR’s sensitivity to subtle changes in soil moisture. Many other 
experiments have been reported under more realistic conditions where a pipe is actually leaking 
and the leak in need of detection. Some have noted the difficulty of GPR in detecting these 
changes in wet, clay soils. 
 
GPR has a long and sometimes checkered history of pipe detection. Although it is perhaps the 
best general pipe locator available, it is often mistakenly assumed to be a silver bullet. In fact, 
GPR has difficulty in highly conductive clay and silty soils. Sometimes clutter from other objects 
can obscure pipes. And most commonly, subtleties in processing and interpretation mean that 
less skilled surveyors may fail to detect pipes that would otherwise be clearly resolved.  
 
This means that GPR can never be 100% successful at locating pipes. However, expanding GPRs 
capabilities into full 3D images has made detection much more robust, and interpretation much 
simpler.  This means that GPR is really now entering into a new phase of capability, making it 
far more versatile than ever before. 
 
There are two classes of GPR that are in general use.  The most widely used is impulse, where a 
single cycle (or several) is transmitted, and the resulting echo is sampled down to audio 
frequencies for processing.  This radar corresponds to a Time Domain Reflectometer instrument.  
The second class or GPRs is Stepped CW.  In this, a single frequency is output and the receiver 
is allowed to come to equilibrium.  This can take from 50 microseconds to milliseconds.  The 
cycle is then repeated for many different frequencies, and the results converted to an equivalent 
time display via an inverse FFT.  The stepped CW system has a narrower beam then impulse, 
and so does not show the typical hyperbolas for pipe targets.  This may make it harder to 
discriminate many targets nearby, and also makes it almost impossible to obtain direct depth 
verification.  Depth accuracy can only depend on how well the soil dielectric constant is known.  
With impulse, the shape of the hyperbola contains information on the average dielectric constant 
and the accurate depth. 
 
Although several companies compete to produce ever-simplified tools for general use in locating 
underground utilities, This current proposal really has no good GPR prior art analog with which 
to compare it. Perhaps it should most fairly be compared to multi-element prototype systems that 
                                                           
10 Hunaidi, O, Giamou, P., GPR for Detection of Leaks in Buried Plastic Water Distribution Pipes, Seventh 
International Conference on Ground-Penetrating Radar, Lawrence Kansas, USA, 27-30 May 1998. 

(http://www.nrc.ca/irc/fulltext/nrcc42068.pdf) 
www.geo-graf.com/leaks-ch.htm
www.st-and.ac.uk/~www_sgg/personal/crblink/web/GPRpipe.pdf  
http://www.kcl.ac.uk/kis/schools/hums/geog/phdcharl.htm
http://www.geog.leeds.ac.uk/people/e.obrien/research.html
www.geophysik.uni-kiel.de/itrinks/ABSTRACT/Abstract.html  
 

 
11 Sneddon, K. W., Olhoeft, G. R., and Powers, M. H., 2000, Determining and mapping DNAPL saturation values 
from noninvasive GPR measurements: in Proc.of SAGEEP 2000, 21-25 February 2000, Arlington, VA, M.H. 
Powers, A-B. Ibrahim, and L. Cramer, eds., EEGS, Wheat Ridge, CO, p. 293-302. (http://www.g-p-
r.com/sageep00.PDF) 
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have recently been produced. An example would be GSSI’s Terravision system that produces a 
3D picture after one swath of data has been acquired. The Swedish company, Mala Geoscience 
AB, has also built a radar array in the CART Imaging System for WTI. 
 
 
 
TABLE 1 - COMPARISON OF KEY ATTRIBUTES OF PIPE DETECTION METHODS 

Method 
Max Depth 
10” Metal 

Pipe 

Depth 
Estimation 
Accuracy 

Pipe 
Diameter 

Estimation 

False 
alarm rate 

Detection 
Problems 

Survey 
Speed 

Cost 
(capital + 
operating) 

Pulsed_Induction        
Inductive 
Locator 

10’ GOOD NO MEDIUM Large Pipes; 
Plastic SLOW LOW 

Inductive 
Tracer 

10’ GOOD NO MEDIUM Large Pipes; 
Plastic MEDIUM LOW 

Conductive 
Tracer 

15’ GOOD NO MEDIUM Large Pipes; 
Plastic FAST LOW 

Mag 6’ NA NO MEDIUM Non-Mag FAST MEDIUM 
EM 10’ POOR NO HIGH Non-Metal FAST MEDIUM 

Resistivity 10’ POOR NO LOW Non-Metal V. SLOW LOW 

GPR 20’ GOOD NO LOW Deep Clay 
Soils MEDIUM HIGH 

 
 
 
 
 
6.2 GENERAL LEAK DETECTION OVERVIEW12 
 
The current best practice for leak detection takes several forms depending on the situation. Much has been written 
on the subject and there are several good sites13 and references14 available  
                                                           
12 Much of the leak detection overview information is derived from an article by Dr Jun Zhang of REL Instrumentation 
Limited, Manchester, UK., entitled Designing a Cost Effective and Reliable Pipeline Leak Detection System. 
13  http://www.epri.com/newsletter.asp?issueid=5353&marketnid=8

http://www.nrc.ca/irc/leak/leakdetect.html
http://www.awwa.org/journal/j200es2.htm
http://www.awwarf.com/exsums/90770.htm

 
 
14 This list, taken from Dr Jun Zhang’s article mentioned above, is included here as a useful reference guide. 

[1] Bose J. R., Olson M. K., “TAPS’s leak detection seeks greater precision”, Oil and Gas Journal, April 5, 1993, p43. 
[2] Carlson B. N., “Selection and use of pipeline leak detection methods for liability management into the 21 st 
century”, Pipeline Infrastructure II, Proceedings of the International Conference, ASCE, 1993 
[3] Farmer E., Kohlrust R., Myers G., Verduzco G., “Leak detection tool undergoes field tests”, Oil and Gas Journal, 
December 1988 
[4] Graf F.L., “Using ground-penetrating radar to pinpoint pipeline leaks”, Materials Performance, 1990, Vol. 29, No. 
4, p. 27-29. 
[5] Griebenow G., Mears M., “Leak detection implementation: modelling and tuning methods”, American Society of 
Mechanical Engineers, Petroleum Division, 1988, Vol.19, p9-18 
[6] Hamande A., Cie S. et, Sambre J. sur, “New system pinpoints leaks in ethylene pipeline”, Pipeline & Gas Journal, 
April 1995, Vol. 222, No. 4, p38-41 
[7] Hennigar G. W., “Leak detection: new technology that works”, Gas Industries, January 1993, Vol. 37, p16-18 
[8] Hough J.E., “Leak testing of pipelines uses pressure and acoustic velocity”, Oil and Gas Journal, Vol. 86, No. 47, 
1988, p35-41. 
[9] Klein W. R., “Acoustic leak detection”, American Society of Mechanical Engineers, Petroleum Division, 1993, 
Vol.55, p57-61 
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6.2.1 Biological:  
Experienced personnel will walk along a pipeline, looking for unusual patterns nearby, smelling 
substances that could be released from the pipeline or listening to noises generated by product 
escaping from a pipeline hole. Trained dogs are also used to smell substances released from a 
leak. 

 
6.2.2 Temperature change:  
Some leaks can be detected by temperature changes in the soil. Temperature sensors such as an 
optical time domain reflectometer, are used to detect changes of temperature in the immediate 
surroundings of a leak.15  
 
6.2.3 Acoustic devices:  
Noise is generated as the gas escapes from the pipeline. An acoustic pipe tracer locates buried 
plastic gas lines by introducing an identifiable acoustic signal into the pipe. The receiver detects 
the sound waves that radiate from the pipe into the surrounding soil. The system operates 
through a variety of surface materials and is safe for use by suitably trained gas industry 
personnel. Due to the limitation of the detection range, it is usually necessary to install many 
acoustic sensors along the line.16   
 
6.2.4 Sampling devices: 
 If the product inside a pipeline is highly volatile, a vapor monitoring system can be used to 
detect the level of hydrocarbon vapor in the pipeline surroundings. This is usually done through 
gas sampling. The sampling can be done by carrying the device along a pipeline or using a 
sensor tube buried in parallel to the pipeline. The response time of the detection system is usually 
from several hours to days.  
 

                                                                                                                                                                                           
[10] Kurmer J. P., Kingsley S. A., Laudo J. S., Krak S. J., “Applicability of a novel distributed fibre optic acoustic 
sensor for leak detection”, Proceedings SPIE Vol. 1797, 1993, p63-71 
[11] Liou C. P., “Pipeline leak detection based on mass balance”, Pipeline Infrastructure II, Proceedings of the 
International Conference, ASCE, 1993 
[12] Liou J. C. P., Tian J., “Leak detection: a transient flow simulation approach”, American Society of Mechanical 
Engineers, Petroleum Division, 1994, Vol.60, p51-58 
[13] Mears M. N., “Real world applications of pipeline leak detection”, Pipeline Infrastructure II, Proceedings of the 
International Conference, ASCE, 1993 
[14] Parry B., Mactaggart R., Toerper C., “Compensated volume balance leak detection on a batched LPG pipeline”, 
Proceedings of Offshore Mechanics & Arctic Engineering conference (OMAE), 1992 
[15] Sperl J. L., “System pinpoints leaks on Point Arguello offshore line”, Oil & Gas Journal, Sept 9, 1991, p47-52 
[16] Turner N. C., “Hardware and software techniques for pipeline integrity and leak detection monitoring”, 
Proceedings of Offshore Europe 91, Aberdeen, Scotland, 1991  
[17] Weil G.J., “Non contact, remote sensing of buried water pipeline leaks using infrared thermography”, Water 
Resources Planning and Management and Urban Water Resources, 1993, p404-407 
[18] Zhang X. J., “Statistical leak detection in gas and liquid pipelines”, Pipes & Pipelines International, July -August 
1993, p26-29 

 
15 http://www.predictive-maintenance.com/pipe.html 
16 http://www.marrserv.com/detsol/water.htm
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6.2.5 Negative pressure:  
When a leak occurs, a rarefaction wave is produced in the pipeline contents, which propagates 
both upstream and downstream. Pressure transducers can be used to measure pressure gradient 
with respect to time. Usually two sensors are used for each pipeline segment.  
 
6.2.6 Flow or pressure change:  
If the flow or pressure rate of change at the inlet or outlet is higher than a predefined figure 
within a specific time period, then a leak alarm is generated. 
 
6.2.7 Mass or volume balance:  
If the difference between an upstream and down stream flow measurement changes by more than 
an established tolerance, a leak alarm will be generated. This method allows the detection of a 
leak that does not necessarily generate a high rate of change in pressure or flow.  
 
6.2.8 Dynamic model based system:  
This technique attempts to mathematically model the fluid flow within a pipeline. The method 
requires flow, pressure, temperature measurements at the inlet and outlet of a pipeline, ideally 
also pressure/temperature measurements at several points along the pipeline. 
  
6.2.9 Pressure Point Analysis (PPA): 
Based on the assumption that the pressure in the line drops due to a leak. An appropriate 
decrease in the mean value of a pressure measurement generates a leak alarm. 
 
TABLE 2 - COMPARISON OF KEY ATTRIBUTES OF DIFFERENT LEAK DETECTION METHODS 

Method Leak 
sensitivity 

Location 
estimate 
available 

Work 
through 

operational 
changes 

24 hour 
availability 

False alarm 
rate 

Maintenance 
requirement 
(expertise) 

Cost 
(capital + 
operating) 

Biological YES YES YES NO LOW MEDIUM HIGH 
Temperature 
change 

YES YES YES NO MEDIUM MEDIUM HIGH 

GPR YES YES YES NO MEDIUM MEDIUM HIGH 
Acoustic YES YES NO YES HIGH MEDIUM MEDIUM 
Sampling YES YES YES NO LOW MEDIUM HIGH 
Negative 
pressure 

YES YES NO YES HIGH MEDIUM MEDIUM 

Flow change NO NO NO YES HIGH LOW LOW 
Mass 
balance 

NO NO NO YES HIGH LOW LOW 

Dynamic 
model 

YES YES YES YES HIGH HIGH HIGH 

PPA YES NO NO YES HIGH MEDIUM MEDIUM 
 
Note that the above attributes are common features of the leak detection methods. In practice, the performance of 
each method varies considerably depending on the vendors, pipeline operating conditions and quality of the 
hardware/instrumentation system available. Examination of Table 1 shows that there is no method that is rated 
“good” for all the attributes. In particular, false alarm appears to be a common problem for all the techniques except 
the biological and sampling methods, which cannot monitor a pipeline continuously. 
 
http://bigisland.ttclients.com/frtr/pdf/13_wurtsmi.PDF
http://www.cssip.uq.edu.au/gpr2000/abstracts/king01.html
http://www.seg.org/publications/geoarchive/1997/may-jun/zeng.pdf
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7 APPENDIX B: USER INTERFACE 

 
The user interface has several screens used to control both the basic and the more advanced 
features. All features are described briefly below. 
 
 

oror

 
Figure 34: Flow diagram of the user interface srceens. 
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7.1.1 Positioning 
 
The first thing to do is hit positioning to calibrate the gyro. Place the antenna directly in front of 
the user and rest it on the ground. Hit calibrate and wait several seconds while an average of the 
baseline voltage is calculated for the gyro. This helps prevent drift during operation. Once the 
system beeps and shows numbers (like –0.13 degrees) in the GYROHEADING slot one is now 
ready to locate pipes. If one also uses the GPS, hitting RUN collects GPS information and shows 
to whether there are enough satellites visible to get good positioning. Once the GPS STATUS is 
VALID one can track GPS data. For a “cold start” the longest delay for getting a valid position is 
about a minute. Hitting ok returns to the main menu. 
 

 
Figure 35: Positioning screen 

 
7.1.2 System Init 
 
Now hit System init. One should see data appear in the data pane. 
Set the desired depth and the anticipated soil type. The depth options are 3,6,9,12,18 feet. There 
are four soil types. Soil 1 corresponds to a dielectric of 5 which is good for dry sands. Soil 2 is 
dielectric 5 for wet sands and granite. Soil Type 3 is dielectric 9, appropriate for loose, and Soil 
Type 4 is dielectric 11 which could be used for clay. 
 

 
Figure 36: The initialization screen shows both 

that the antenna is working and the quality 
and depth penetration of the data. 
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After each change, look at the bottom of the trace  for signs of signal instability. Notice that the 
deeper one goes, or the higher the soil type, the noisier the bottom of the trace looks. This will 
give a rough idea of whether one can penetrate as deeply as one would like. 
 
 
  
 
7.1.2.1 RUN 
 
Once the depth/dielectric parameters are, hitting RUN presents the main data screen. Depending 
on how the parameters are set (see below) one of two screens will appear. 
The normal screen displays a cookie trail using the GPS information, but one can set it instead to 
display the path in an idealized fashion, as the system is swept back and forth: sort of a moving 
strip chart. 
 

 
Figure 37: The two data collection options. 

 
7.1.3 Project Info 
 
Here one can define the names within the project and write in comments. Here the date stamp 
can be set and the units defined. Hitting Miscellaneous gets to the part where most of the preset 
values are controlled. Hitting ok returns to the main menu. 
 

 
Figure 38: The project Information page for storing site notes. 
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7.1.4 Miscellaneous 
 
Most of the more complex options are buried in the “miscellaneous” menu.  
Here is where one can set the RUN display mode mentioned above to SWEEP or GPS depending 
on which display is preferred. One can also choose to save the data to the standard DZT file type 
opening viewing the actual data in RADAN is desire. 
 

 
Figure 39: This miscellany menu s is where a 

lot of the advanced controls are kept. 

 
7.1.4.1 Survey Area Setup 
 
Accessed from the miscellaneous menu, System Area Setup lets one set the area of the initial 
GPS field. As the user wanders out of this area, the screen is zoomed out to fit all the data on the 
page. 
 

 
Figure 40: This page sets up the 
initial zoom factor for the GPS 

window. 
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7.1.4.2 System Colors 
 
Accessed from the miscellaneous menu, The System Colors page lets one change various colors 
in the user interface. 

 
Figure 41: Color menu 

 
7.1.4.3 System Setup 
 
Accessed from the miscellaneous menu, The System Setup screen allows for control and test of 
different parts of the system, 
 

• One can turn Track Average ON if not going in a straight line, but wandering all around. 
It tries to keep the GYRO sweeps in the center of the screen. Turning it off assumes 
progress roughly straight ahead based on the initial calibration. 

• Emulation mode ON is used for testing the PDA without being hooked up to the antenna. 
It simply produces a fake sinewave signal and fake targets. 

• GYRO and GPS buttons are used to test each separately. 
• Target Confidence sets the threshold at which targets found in the top screen get painted 

in the GPS window. 
• GPS Validity lets one decide which threshold to use to determine whether the GPS signal 

is valid. 
• Fix Toolbar Position is basically a Pocket PC bug fix and should be left to YES. 
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Figure 42: System Setup screen. 

 
To get back to the Main Menu hit ok several times. 
7.1.5 Data Playback 
 

 
Figure 43: The Data Playback menus. 

 
This function is accessed back at the Main Menu. The user selects the project in which he has 
stored the data. Then he clicks the central button below the screen to go inside that folder. Then, 
after selecting the file to play back, he hits that center button again to play back the file. The user 
then sees the data reappear in exactly the way in which it was collected. Hitting ok returns to the 
main menu. 
 
7.1.6 Clear Storage 
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Figure 44: Clear Storage 

 
This function is accessed back at the Main Menu. The screen allows the user to get rid of 
obsolete projects by selecting and hitting DELETE PROJECT. Hitting ok returns to the main 
menu.  
 
 
 
 
 
 
 
 
7.1.7 System Info 
 

 
Figure 45: Screen Info provides 

software and firmware 
information. 

 
Again accessed from the  main menu, this screen simply gives the version information for the 
software. Hitting SELFTEST cycles through each component to check its version information. 
Hitting ok returns to the main menu. 
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