Oil & Natural Gas Technology

DOE Award No.: DE-FC26-06NT15569

Quarterly Progress Report With Summaries of Center-sponsored Research (April – June 2008)

UTAH HEAVY OIL PROGRAM

Submitted by: University OF Utah Salt Lake City, UT

Prepared for: United States Department of Energy National Energy Technology Laboratory

August 2008

Office of Fossil Energy

Quarterly Progress Report Utah Heavy Oil Program University of Utah DE-FC26-06NT15569 Quarter Ended June 30, 2008

Philip J. Smith, Principal Investigator Project Period June 21, 2006 through October 21, 2008

EXECUTIVE SUMMARY

The mission of the Utah Heavy Oil Program (UHOP) is to provide research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. This quarter saw significant steps toward completion of the five UHOP-sponsored research projects. It is anticipated that results and analysis from all five projects will be presented at a UHOP-sponsored technical meeting this fall. The on-line repository for information, data, and software relating to unconventional oil resources in North America is continuing to be repopulated with 1400 documents with documents for which copyright permission has been obtained. Documents can be searched and downloaded at http://ds.heavyoil.utah.edu/dspace/index.jsp.

PROJECT MILESTONES/PROGRESS PERFORMANCE

A. Progress in Program-Sponsored Projects

Brief summaries are provided below for ongoing work in the five UHOP-sponsored projects.

1. Detailed Study of Shale Pyrolysis for Oil Production

Milind Deo, Eric Eddings, Terry Ring

The isothermal ($300-600^{\circ}$ C) and non-isothermal (0.5 to 50° C/min) decompositions of the crushed Mahogany Oil Shale with a Thermo Gravimetric Analyzer (TGA) in N₂ (pyrolysis) and air (combustion) environments were performed. Data obtained from TGA were analyzed in detail. Different mathematical approaches were used to determine the kinetic parameters (activation energy (E) and pre-exponential factor (A)) with the assumption of first order reaction. Both differential and integral methods were used for the isothermal data and four different approaches were used for the non-isothermal experiments (direct Arrhenius plot, integral method, Friedman approach and the maximum rate method). All of the data with the kinetic parameters obtained is summarized in Appendix 1 and Appendix 2. There is a significant variation in kinetic parameters with different methods used. In general, the activation energy increases as the heating rate increases in the non-isothermal analysis, contrary to some previous observations. Reasons and mechanisms for this difference are being examined.

2. New Approaches to Treat Produced Water and to Perform Water Availability Impact Assessments for Oil Shale Development

Steve Burian, Ramesh Goel, Andy Hong, Brian McPherson

Water Resources Sustainability: The water resources GIS database was expanded to included the Piceance basin (to accompany the Uintah basin database already compiled). A presentation on the topic of water requirements for oil shale development in the Uintah-Piceance basin was given by Eric Jones to the American Water Resources Association Utah section annual conference. His talk won the award for the top undergraduate student paper. We developed a proximity tool in GIS to operate on the Piceance-Uintah database to identify water resources within a user defined radius. The tool compiles a summary of the water available, quantifies the amounts, and lists water rights associated with the identified water resources. The tool can be used to locate potential oil shale development locations and help to identify available water resources and water rights controlling those resources. A revised estimate of oil shale reserves was also prepared through a geostatistical analysis performed by Greg Nash. A revised estimate of population growth associated with oil shale industrygrowth in the Vernal, Utah area was produced. Both revised estimates were incorporated into a revised estimate of water requirements for oil shale development in the Uintah-Piceance Basins. An abstract on this work was submitted and accepted to American Society of Civil Engineers Environment and Water Resources Institute international conference scheduled for January 2009 in Thailand.

Integrated Treatment Approach: This quarter of the project focused on bacterial and electrolytic oxidation of MTBE. Combined treatment using electrolytic and biological degradation of naphthalene was also tested. Results show that electrolytic degradation products of naphthalene were further degraded by bacteria, thus providing a complete treatment of PAH containing wastewater. Tests are underway to test the kinetics of MTBE degradation using electrolysis and Fenton-reaction-assisted advanced oxidation techniques. A manuscript is in preparation on the experimental work and results obtained so far. Membrane bioreactors to obtain treated water of reusable quality will be set in the near future.

3. In Situ Production of Utah Oil Sands

Pete Rose, Royhan Gani, Jack Hamilton and Milind Deo

No report received.

4. Depositional heterogeneity and fluid flow modeling of the oil shale interval of the upper Green River Formation, eastern Uinta Basin, Utah Royhan Gani and Milind Deo

Cores of well U059 were logged for a total of 958.75 feet (292.23 m) at the Utah Geological Survey (UGS), Utah Core Research Center. Core U059, also known as White River Shale Project P-4, was acquired by UGS from a well in Uinta County, T10S-R25E.

Core lithology and sedimentary and bioturbation structures were determined and logged through visual investigation using HCl and a light microscope when necessary. Photographs were taken at key depths in the core for documentation.

Next, stratigraphic picks were made on the U059 well logs indicating stratigraphically significant surfaces. UGS picks were available for U059 for one rich and two lean oil shale zones, the Mahogany Bed marker, and two dated tuff beds, the Curly Tuff and Wavy Tuff. UGS picks were confirmed to match respective core log intervals at proper measured depths.

Lastly, UGS picks of seven lean and eight rich oil shale zones from seven density logs in the central Uinta Basin are being correlated to the logs of the study area in the eastern Uinta Basin including U059. Stratigraphic surface picks made for U059 are also being extended for the study area. The entire core-log is provided as an appendix (Appendix C).

Preliminary work shows that variation in the thicknesses of rich and lean oil shale zones follow the trend of thicknesses between stratigraphic picks in the subsurface. The implied relationship between the deposition of oil shale and fluctuations in lake level is strong. Furthermore, this study defines a shift in both log characteristics and analogous core lithology and stratigraphy that coincides with a shift from a regime of alternating rich and lean zones to a uniformly rich zone. This shift correlates to the boundary between the transitional interval and the upper member of the Green River Formation defined in outcrop by earlier workers. The process model is being modified based on this new characterization.

5. Analysis of Environmental, Legal, Socioeconomic and Policy Issues Critical to the Development of Commercial Oil Shale Leasing on the Public Lands in Colorado, Utah, and Wyoming under the Mandates of the Energy Policy Act of 2005; Economic Evaluation of Bitumen Upgrading

Robert Keiter, Kirsten Uchitel, Alan Isaacson

Legal and Economic Analysis: We reviewed and analyzed the Bureau of Land Management's PEIS on Oil Shale Leasing. We also began our review and analysis of the public, non-governmental organization, and industry comments on commercial oil shale leasing options as outlined in the PEIS. We also interviewed and discussed oil shale leasing issues and models with various individuals with commercial leasing experience on the public lands. Finally, we reviewed and edited draft sections of the report on commercial oil shale leasing.

Economic Evaluation of Bitumen Upgrading: Alan Isaacson, the PI of this subtask, died in an unfortunate accident in the mountains of northern Utah during a spring snowstorm. We are evaluating how to proceed with this task given the loss of his significant expertise.

B. On-line Repository

Some documents are now available for full-text searching and for downloading at <u>http://ds.heavyoil.utah.edu/dspace/index.jsp</u>. With the recent hiring of an undergraduate student to input metadata for each document that is uploaded to the repository, we anticipate that the repository will be populated with several hundred documents by the end of August 2008.

In anticipation of adding further material to the repository, we met with several employees of the Utah Geological Survey (UGS) to discuss opportunities for collaboration and information dissemination. UGS is anxious to provide the public with multiple avenues for obtaining information from them and has agreed to provide us with additional documents, data, maps, and other materials as they become available.

CONCLUSIONS

The projects funded by UHOP generated a significant quantity of data for review and analysis in this quarter. In addition, the UHOP repository now contains some documents that can be searched and downloaded. Additional materials will be added to the repository through the end of this phase of project funding.

COST PLAN/STATUS

				Yea	ar 1			
Descling Departing Overter	(Q1	(Q2	(23	(Q4
Baseline Reporting Quarter	6/21/06	- 9/30/06	10/1/06	- 12/31/06	1/1/07	- 3/31/07	4/1/07	- 6/30/07
	Q1	Total	Q2	Total	Q3	Total	Q4	Total
Baseline Cost Plan								
Federal Share	126,295	126,295	239,349	365,644	41,357	407,001	147,911	554,912
Non-Federal Share	31,574	31,574	34,342	65,916	25,969	91,885	38,387	130,272
Total Planned	157,869	157,869	273,691	431,560	67,326	498,886	186,298	685,184
Actual Incurred Cost								
Federal Share	126,295	126,295	239,349	365,644	41,357	407,001	164,491	571,492
Non-Federal Share	31,574	31,574	34,342	65,916	25,969	91,885	30,841	122,726
Total Incurred Costs	157,869	157,869	273,691	431,560	67,326	498,886	195,332	694,218
Variance								
Federal Share	0	0	0	0	0	0	16,580	16,580
Non-Federal Share	0	0	0	0	0	0	(7,546)	(7,546)
Total Variance	0	0	0	0	0	0	9,034	9,034

				Yea	ar 2			
Pagaling Reporting Quarter	(Q 5	(26	(27	(28
Daseline Reporting Quarter	7/1/07	- 9/30/07	10/1/07	- 12/31/07	1/1/08	- 3/31/08	4/1/08	- 6/30/08
	Q5	Total	Q6	Total	Q7	Total	Q8	Total
Baseline Cost Plan								
Federal Share	147,911	702,823	147,911	850,734	147,911	998,645	147,911	1,146,556
Non-Federal Share	38,620	168,892	38,620	207,512	38,620	246,132	38,620	284,752
Total Planned	186,531	871,715	186,531	1,058,246	186,531	1,244,777	186,531	1,431,308
Actual Incurred Cost								
Federal Share	161,343	732,835	178,570	911,405	165,243	1,076,648	114,429	1,191,077
Non-Federal Share	29,299	152,025	10,038	162,063	36,285	198,348	19,020	217,368
Total Incurred Costs	190,642	884,860	188,608	1,073,468	201,528	1,274,996	133,449	1,408,445
Variance								
Federal Share	13,432	30,012	30,659	60,671	17,332	78,003	(33,482)	44,521
Non-Federal Share	(9,321)	(16,867)	(28,582)	(45,449)	(2,335)	(47,784)	(19,600)	(67,384)
Total Variance	4,111	13,145	2,077	15,222	14,997	30,219	(53,082)	(22,863)

				Yea	ar 3		
Receipe Reporting Quarter	(Q9	C	Q10			
Baseline Reporting Quarter	7/1/08	- 9/30/08	10/1/08	- 12/31/08			
	Q9	Total	Q10	Total			
Baseline Cost Plan							
Federal Share	147,911	1,294,467	147,909	1,442,376			
Non-Federal Share	38,620	323,372	37,222	360,594			
Total Planned	186,531	1,617,839	185,131	1,802,970			
Actual Incurred Cost							
Federal Share							
Non-Federal Share							
Total Incurred Costs							
Variance					· · · · · · · · · · · · · · · · · · ·		
Federal Share							
Non-Federal Share							
Total Variance							

MILESTONE COMPLETION CHART

				Pr	oject D	uration	Sta	rt: I	End:							
			Projec	t Year '	1		Project	Year 2	2	Pro Ye	oject ar 3					
Task	Critical Path Project Milestone Description	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Planned Start Date	Planned End Date	Actual Start Date	Actual End Date	Comments (notes, explanation of deviation from baseline)
1.1	Identify resources on unconvention- al oil in North America	x										June, 2006	Sept., 2006	June, 2006	Sept., 2006	
1.2	Prepare draft update report on domestic unconvention- al oil resources	x	X									June, 2006	Sept., 2006	June, 2006	Feb. 2007	Identifying personnel & surveying available sources took longer than expected. Added value from the report will be from analysis, which also takes more time.
1.3	Release draft update to public & request input from unconvention- al oil community		X									Sept., 2006	Sept., 2006	Oct., 2006	March 2007	Preliminary draft was released on March 21, 2007 Release delayed by Task 1.2 delay and by problems with report quality from company hired to do page layout.
1.4	Attend the CERI Oil Shale Symposium & provide a summary		x				Х					Oct., 2006	Oct., 2006	Oct., 2006	Oct., 2006	

1.5	Develop on- line repository for all types of material pertaining to unconvention- al oil resources in North America	Х	x	X							June, 2006	June, 2008	June, 2006		The repository is being repopulated with the original 1400 documents that were included; expected completion date for this set of documents is Sept. 2008
1.6	Update and release enhanced version of report developed under 1.3, integrating comments received			x							Jan., 2007	Aug., 2007	April, 2007	Sept., 2007	
1.7	Release on- line repository to unconvention- al oil community			x							Jan., 2007	Jan., 2007	Jan., 2007	Feb, 2007	Release date was Feb. 15, 2007.
1.8	Refine repository, incorporating information provided by user community			x	x	x	x		x	x	Jan., 2007	Oct., 2008	Jan., 2007		
2.1	Identify Center- sponsored research projects areas in consultation with DOE	x				x					Sept., 2006	Sept., 2006	Sept., 2006	Oct., 2006	

2.2	Issue internal RFP to support project areas identified in 2.1	x		x			Sept., 2006	Sept., 2006	Oct., 2006	Nov., 2006	RFP was released on Nov. 20, 2006. Proposals were due Dec. 15, 2006.
2.3	Select 2-3 Center- sponsored research projects	x		x			Oct., 2006	April, 2007	Jan., 2007	April, 2007	Selection of research projects completed in March 2007. Researchers were not notified of project selection before end of quarter three.
2.4	Complete technical reports for Center-based research projects			x			Oct., 2008	Oct., 2008			
2.5	Provide priority listing of research & demonstration needs for domestic production from unconventiona I oil resources		x	X			June, 2007	Sept., 2007	Nov. 2007		Will address this milestone in the first quarter of 2008

APPENDIX A

						ISO	THER	MAL					
Tabl	e : 1		N2_norm	alized d	ata				INTEGR		СН		
Exp No	т	Total time	Initial weight	Start	_ Isothermal temp	Normalized	End_ p	analysis oint	Date	N2		Slope	
	°C	min	mg	Time	Weight Loss	factor	Time	Weight Loss	Dale		R ²	к	InK
1	300	720	26.758	3.33	99.17	0.0917	11.24	98.71	28-Feb-08	0.00174	0.5163	0.0008	-7.1309
2	350	240	26.69	3.82	98.75	0.0875	8.8	98.15	27-Feb-08	0.0016	0.8893	0.0045	-5.40368
3	400	240	22.643	4.36	98.21	0.0821	60.04	90.59	27-Feb-08	0.00148	0.9644	0.0311	-3.47055
4	450	240	24.688	4.96	96.01	0.0601	11.23	89.12	28-Feb-08	0.00138	0.8157	0.2973	-1.21301
5	500	240	25.001	5.59	89.29				1-Mar-08				
6	550	180	23.953	6.3	88.38				2-Mar-08				
7	600	30	24.101	6.96	87.89				2-Mar-08				

Table	: 2	AIR_	normali	zed data					NTEG		RAOCH
Exp No	т	Total time	Initial weight	Start_ Iso terr	othermal 1p	Normaliz	Data	Air		Slope	
	oC	min	mg	Time	Weight Loss	ed factor	Dale	1/T, K	R ²	К	InK
1	300	240	23.643	2.7	99.27	0.0927	1-Mar-08	0.00174	0.873	0.0365	-3.31044
2	350	240	23.391	3.82	98.14	0.0814	29-Feb-08	0.0016	0.8752	0.1909	-1.65601
3	400	240	23.241	4.31	96.85	0.0685	29-Feb-08	0.00148	0.8455	0.8725	-0.13639
4	450	180	32.162	4.88	94.32	0.0432	1-Mar-08	0.00138	0.864	2.8006	1.02983

Figure A.1 – Normalized conversion data for N₂

Figure A.2 – Normalized conversion data for air

Figure A.4 – Integral method for 1st order air

	N ₂	
Activation Energy	A	R2
134.778254	1.2E+09	0.9834

Figure A.5 – Arrhenius plot for 1st order integral data_N₂

Figure A.6 – Arrhenius plot for 1st order integral data_air

	Air	
Activation Energy	А	R ²
100.47469	5.1E+07	0.9996

APPENDIX 2

						N2_D	ifferential ap	proach						
Exp No	Heating	Initial	St	art	E	nd		max		R ²	slope	Intercept	Activation	А
	rate	weight											energy	
	Beta	mg	т	wt %	т	wt%	Tmax	wt%	%/min					
1	0.5	22.645	255.66	98.68	421.6	91.98	392.76	93.52	0.039	0.961	9351	10.8	77.744214	24510
2	1	28.642	269.6	98.84	437.6	92.52	398.33	94.21	0.062	0.959	9002	10.07	74.842628	23624
3	2	26.94	280.06	98.67	456.4	91.57	414.15	93.48	0.181	0.962	10379	11.8	86.291006	266505
4	5	25.972	348.93	97.83	474	90.59	432.29	92.83	0.074	0.977	14873	17.93	123.65412	3E+08
5	10	38.452	349.79	98.26	490	90.33	445.62	92.74	1.348	0.972	14905	17.54	123.92017	4E+08
6	20	29.493	371.61	98.42	504	89.32	460.18	92.08	3.549	0.979	17757	21	147.6317	3E+10
7	50	22.374	377.32	98.57	530.6	88.87	477.03	92.11	9.099	0.967	17218	19.56	143.15045	2E+10

AIR_DATA															
						First Peak							Second F	Peak	
Evn	Ramn	Initial	Sta	art		End		max			nd		max		weight
No	rate	weight													loss
	Beta	mg	т	wt %	т	wt%	Tmax	wt%	%/min	т	wt%	Tmax	wt%	%/min	%
1	0.5	18.688	179	99.33	311.3	91.84	279.9	94.8	0.11	396.4	87.09	340.2	89.2	0.108	12.91
2	1	20.261	199.1	99.41	323.8	92.05	294.1	94.71	0.1103	400.39	86.98	354.42	89.26	0.107	13.02
3	2	19.981	201.9	99.51	339.1	92.44	305.9	95.2	0.097	421.5	87.71	367.1	90.07	0.094	12.29
4	5	30.562	211.4	99.56	358.5	92.54	323.8	95.32	0.4545	459.65	87.28	392.22	89.87	0.437	12.72
5	10	34.986	216.5	99.98	374.9	92.31	337.1	95.18	0.9074	499.49	86.87	409.59	89.82	0.747	13.13
6	20	21.695	215.5	99.62	389.2	92.42	341.1	95.9	1.697	504.6	86.93	425.93	89.87	1.445	13.07
7	50	30.223	227.7	99.58	395.3	93.19	351.4	95.97	3.466	522.99	86.97	450.45	89.8	3.902	13.03

 $Figure \ B.1-Non-isothermal_N_2_conversion \ data$

Figure B.2 – Non-isothermal_air_conversion data

	NONISO _N2_Differ	ential APPROA	CH						
	Exp No		1	2	3	4	5	6	7
	Heating rate	Beta	0.5	1	2	5	10	20	50
·	Initial weight	mg	22.645	28.642	26.94	25.972	38.452	29.493	22.374
		т	255.66	269.6	280.06	348.93	349.79	371.61	377.32
	Start	wt %	98.68	98.84	98.67	97.83	98.26	98.42	98.57
		т	421.57	437.56	456.35	473.98	489.96	504	530.56
	End	wt%	91.98	92.52	91.57	90.59	90.33	89.32	88.87
OS_N2		Tmax	392.76	398.33	414.15	432.29	445.62	460.18	477.03
		wt%	93.52	94.21	93.48	92.83	92.74	92.08	92.11
	max	%/min	0.0393	0.06192	0.1814	0.07381	1.348	3.549	9.099
	Date		25-Feb-08	8-Feb-08	10-Feb-08	8-Feb-08	6-Feb-08	4-Feb-08	7-Feb-08
	weight loss	mg	8.02	7.48	8.43	9.41	9.67	10.68	11.13
			0.961	0.959	0.962	0.977	0.972	0.979	0.967
	slope		9351	9002	10379	14873	14905	17757	17218
	Intercept		10.8	10.07	11.8	17.93	17.54	21	19.56
	Activation energy	KJ/mol	77.744214	74.842628	86.291006	123.6541	123.9202	147.6317	143.1505
	Preexponential factor		24510.401	23623.565	266504.71	3.06E+08	4.15E+08	2.64E+10	1.56E+10
Literature	Activation	(Spain)Torrent				171+_17	171+_16	102+_4	115+-9
	Α	(Fuel 80,2001)				1.53E+10	9.23E+09	3.27E+04	2.65E+06
	Activation	wang Quing					137.67	134.27	124.47
	A	sample s1					8.58E+09	1.27E+10	1.07E+10

Figure B.3 – Non-isothermal_N₂_1st order_differential approach

Figure B.4 – Non-isothermal air 1st order differential approach single step

	AIR _Differential Approach										
	Single step										
Exp No	Ramp rate	Initial weight	nitial eight R2 slope Intercept E A					InA			
	Beta	mg				KJ /mol K					
1	0.5	18.688	0.977	7548	9.1852	62.76	4876	8.49205			
2	1	20.261	0.975	7985	9.652	66.38	15553	9.652			
3	2	19.981	0.982	7738	8.8429	64.34	13850	9.53605			
4	5	30.562	0.98	7576	7.9856	62.99	14692	9.59504			
5	10	34.986	0.971	6981	6.5663	58.04	7107	8.86889			
6	20	21.695	0.976	7331	6.9045	60.95	19935	9.90023			
7	50	30.223	0.962	7254	6.4983	60.31	33201	10.4103			

	AIR_Differeantial Approach_Two Steps												
		First peak area							•	Second p	eak area		•
Exp No	Heating rate	R2	slope	Intercept	E	Α	In A	R2	slope	Intercept	E	Α	In A
	oC/min												
1	0.5	0.963	7762	9.6266	64.536	7581	8.9335	0.87	9639	12.486	80.142	1E+05	11.793
2	1	0.963	7690	9.1047	63.933	8997	9.1047	0.97	12220	17.117	101.6	3E+07	17.117
3	2	0.972	7641	8.6715	63.526	11668	9.3646	0.93	10835	13.352	90.082	1E+06	14.045
4	5	0.97	7875	8.5548	65.469	25958	10.164	0.9	9617	10.928	79.952	3E+05	12.537
5	10	0.966	7797	8.0696	64.821	31958	10.372	0.85	7842	7.6991	65.196	22064	10.002
6	20	0.966	7695	7.5846	63.977	39353	10.58	0.79	9615	10.662	79.942	9E+05	13.658
7	50	0.949	7525	7.023	62.563	56107	10.935	0.95	11607	12.372	96.501	1E+07	16.284

Figure B.5 – Non-isothermal_air_1st order_differential approach_two steps

Figure B.6 – Non-isothermal N_2 1st order integral approach single step

NONISO _N2_INT	EGRAL APPROA	СН						
Exp No		1	2	3	4	5	6	7
Heating rate	Beta	0.5	1	2	5	10	20	50
Initial weight	mg	22.645	28.642	26.94	25.972	38.452	29.493	22.374
	т	255.66	269.6	280.06	348.93	349.79	371.61	377.32
Start	wt %	98.68	98.84	98.67	97.83	98.26	98.42	98.57
	т	421.57	437.56	456.35	473.98	489.96	504	530.56
End	wt%	91.98	92.52	91.57	90.59	90.33	89.32	88.87
	Tmax	392.76	398.33	414.15	432.29	445.62	460.18	477.03
	wt%	93.52	94.21	93.48	92.83	92.74	92.08	92.11
max	%/min	0.0393	0.06192	0.1814	0.07381	1.348	3.549	9.099
date		25-Feb-08	8-Feb-08	10-Feb-08	8-Feb-08	6-Feb-08	4-Feb-08	7-Feb-08
weight loss	mg	8.02	7.48	8.43	9.41	9.67	10.68	11.13
	R2	0.978	0.97	0.985	0.988	0.995	0.991	0.991
slope		10837	10708	11818	18441	17276	22780	21283
Intercept		3.714	3.302	4.46	13.2	11.08	18.02	15.15
Activation		90.098818	89.026312	98.254852	153.3185	143.63266	189.39292	176.9469
Α		222253.59	290903.363	2044218.8	4.98E+10	1.121E+10	3.052E+13	4.04E+12
Activation	Wang Quing					80.63	84.18	81.69
Α	sample s1					1.52E+05	2.32E+05	1.01E+06
Activation	Wang S Li C				169.1			
	Yue Fuel							
	tech							
Α	85(2003)				4.07E+09			
Activation			50.7	47.7	48.7	44.3	39.2	32.9

Figure B.7 – Non-isothermal air 1st order integral approach single step

Air_Integral Approach_Signle step										
Exp No	Heating rate	Initial weight	R2	slope	Intercept	E	Α	In A		
	Beta	mg								
1	0.5	18.688	0.976	9109.9	2.7522	75.7397	71408.3	11.17617		
2	1	20.261	0.97	9606.4	3.1698	79.8676	228658	12.339985		
3	2	19.981	0.975	9311.3	2.2833	77.4141	182669	12.115431		
4	5	30.562	0.974	9008.3	1.1055	74.895	136058	11.82084		
5	10	34.986	0.965	8463	-0.2352	70.361	66892.6	11.110844		
6	20	21.695	0.976	8529.3	-0.393	70.913	115150	11.653995		
7	50	30.223	0.956	8514.5	-0.7575	70.79	199596	12.204049		

Figure B.8 – Non-isothermal_air_1st order_integral approach two steps

	Air_ Integral approach_two steps											
	First peak								Second p	eak		
Beta	slope	Intercept	R²	E	Α	InA	slope	Intercept	R ²	E	А	In A
0.5	10762	6.032	0.977	89.48	2E+06	14.623	8536.6	1.6823	0.9925	70.97	22955	10.0413
1	11251	6.3277	0.9668	93.54	6E+06	15.656	9357.3	2.627	0.9852	77.8	1E+05	11.7709
2	10623	4.7822	0.9729	88.32	3E+06	14.746	10354	3.7316	0.9039	86.08	9E+05	13.6699
5	10714	4.2567	0.9668	89.08	4E+06	15.145	7703.2	-0.9503	0.9967	64.04	14891	9.60853
10	10612	3.6579	0.9727	88.23	4E+06	15.23	6410.4	-3.2679	0.9967	53.3	2441	7.80036
20	10110	2.4578	0.9815	84.05	2E+06	14.675	7101.9	-2.0489	0.9984	59.05	18305	9.81495
50	10688	3.1015	0.954	88.86	1E+07	16.29	7674	-2.0674	0.9783	63.8	48544	10.7902

Friedman_N2_NonIso									
Kinetic	Slope	Intercept	R2	Activation energy,	A				
Conversion				kJ/mol		LnA			
0.05	12767	16.491	0.9838	106.144838	15283636	16.54229			
0.1	14197	18.575	0.9814	118.033858	1.3E+08	18.68036			
0.2	16912	22.46	0.983	140.606368	7.1E+09	22.68314			
0.3	19417	25.934	0.9824	161.432938	2.62E+11	26.29067			
0.4	21671	28.999	0.9897	180.172694	6.55E+12	29.50983			
0.5	24326	32.555	0.9973	202.246364	2.75E+14	33.24815			
0.6	26110	34.828	0.9988	217.07854	3.34E+15	35.74429			
0.7	28020	37.102	0.9961	232.95828	4.33E+16	38.30597			
0.8	27740	36.162	0.9905	230.63036	2.53E+16	37.77144			
0.9	25843	32.356	0.9861	214.858702	1.13E+15	34.65859			
0.95	27102	33.171	0.9911	225.326028	5.09E+15	36.16673			

 $Figure: B.9-Non-isothermal_N_2_1^{st} \ order_Friedman \ approach_$

	AIR_NONISOTHERMAL_FRIEDMAN										
Kinetic	Slope	Intercept	R2	Activation	А						
Conversion				energy, kJ/mol		InA					
0.05	19458	31.84	0.9706	161.77	7.1E+13	31.89129					
0.1	18585	29.602	0.9719	154.52	8E+12	29.70736					
0.2	19177	29.911	0.9814	159.44	1.2E+13	30.13414					
0.3	16911	25.407	0.9827	140.6	1.5E+11	25.76367					
0.4	14820	21.272	0.9972	123.21	2.9E+09	21.78283					
0.5	15384	21.392	0.999	127.9	3.9E+09	22.08515					
0.6	15753	21.24	0.9985	130.97	4.2E+09	22.15629					
0.7	15833	20.858	0.9933	131.64	3.8E+09	22.06197					
0.8	15789	20.251	0.9887	131.27	3.1E+09	21.86044					
0.9	14615	17.659	0.968	121.51	4.7E+08	19.96159					
0.95	14447	16.36	0.8899	120.11	2.5E+08	19.35573					

Figure B.10 – Non-isothermal_air_1st order_Friedman approach_

Maximum rate method_ N2_ noniso							
	This work Literature						
Activation	78.2846	230.6	219.2				
А	1.03E+06 2.36E+14 3.25E+13						

Figure B.12 – Non-isothermal air 1st order maximum rate method approach 1st peak

Maximum rate method for Air								
1st	peak	2nd peak						
Slop	21948	Slop	17181					
intercept	25.8	intercept	14.446					
R2	0.9541	R2	0.9994					
Activation	182.47567	Activation	142.842834					
А	3.517E+15	А	3.23E+10					

Energy and Geoscience Institute Utah Geological Survey Utah Core Research Center Logged: 4/1/08 - 4/17/08 by William Gallin and Royhan Gani

Core Log Key

L	ithologies	Sedi	mentary Structures
	Organic-rich Shale or Carbonaceous Shale (excluding oil shale)		Horizontal Shale Mud Interlaminations
	Shale or Silt Mud		Convolute Bedding
	Calcareous Mud		Wavey Bedding
	Dolomite Mud		Symmetrical Ripple Cross-lamination
	Sand		Ripple-topped Interbed
	Tuff, Ash, and Zeolite Sands		Asymmetrical Ripple Cross-lamination
	Nahcolite	(\bigcirc)	Marcasite, Pyrite, or Fe-concretion
	Gradational Lithology Change (e.g. coarsening upward from		Mud Rip-up Clast
	muu to sand)		Nahcolite filled (or partially filled) Vug
			Sand with erosional base
			Sand Lens in Fine- grained Sediment

Wave ripples with mud drapes

2 cm thick sulfur interval: 1010'

2-3 cm thick sulfur interval: 1020.25' 3-4 cm thick sulfur interval: 1020.75'

Terebellina: 914.75'-915'

Several 1-2 mm thick red colored clay laminae: 949.75' - 950'

Logged: 4/8/08 and 4/10/08 by William Gallin and Royhan Gani

Dark, organic-rich shale interbeds in dolomitic mud: 800.25'-800.75'

Gradational color shift from biege-brown below to gray above; no apparent lithology change: 804.25' Well-rounded, spherical zeolite sand grains: 805.5'

Sharp color change contact; lime mud dark gray above, lime mud biege-brown below; no apparent lithology change: 834.5'

Very fine sand with oily pore spaces; sulfur precipitation: 836.5'-837'

Heavily deformed, sulfur-rich, silty mudstone with pyritized contacts above and below: 854.75'-855.25'

Fining-upward sand with coarse, well-rounded zeolite grains at base: $764.5^{\prime}\text{-}765^{\prime}$

Organic-rich, finely laminated shale: 770.75'-771.25'

Gradational color change; dark brown colored lime mud above, brown-biege colored lime mud below; no apparent lithology change: 772.25'

Three deformed tuffaceous beds: 776.5'-777.5'

Zeolite pebble lens: 779'

Curly Tuff; light biege to white, well-rounded zeolite grains, black biotite, yellow ash ground mass: 778.75'-781.5'

Wavey Tuff; biotite and muscovite in a yellow ash groundmass: 634.75'-637.25'

Logged: 4/15/08 and 4/17/08 by William Gallin and Royhan Gani

Sharp contact in sediment color change; carbonate mud is a darker shade of biege-brown above and a lighter shade of biege brown below: 477.5'

Possible Thalassinoides: 390'

Very fine sand fining upward to silt, interlaminated with very fine sand layers: 276' -274'

Gradational upward lithology and grain size change from carbonate mud below to silt mud above: 264'

Rippled, very fine sand with coal rip up clasts: 269'-272.5'

Carbonaceous mud / coal layer: 272.5'

National Energy Technology Laboratory

626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940

3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880

One West Third Street, Suite 1400 Tulsa, OK 74103-3519

1450 Queen Avenue SW Albany, OR 97321-2198

2175 University Ave. South Suite 201 Fairbanks, AK 99709

Visit the NETL website at: www.netl.doe.gov

Customer Service: 1-800-553-7681

