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ABSTRACT 
 

Dispersive mixing has an important impact on the effectiveness of miscible floods. 

Simulations routinely assume Fickian dispersion, yet it is well established that  

dispersivity depends on the scale of measurement. This is one of the main reasons that a 

satisfactory method for design of field-scale miscible displacement processes is still not 

available.  

The main objective of this project was to improve the understanding of the 

fundamental mechanisms of dispersion and mixing, particularly at the pore scale. To this 

end, microsensors were developed and used in the laboratory to measure directly the 

solute concentrations at the scale of individual pores; the origin of hydrodynamic 

dispersion was evaluated from first principles of laminar flow and diffusion at the grain 

scale in simple but geometrically completely defined porous media; techniques to use 

flow reversal to distinguish the contribution to dispersion of convective spreading from 

that of true mixing; and the field scale impact of permeability heterogeneity on 

hydrodynamic dispersion was evaluated numerically.  

This project solved a long-standing problem in solute transport in porous media 

by quantifying the physical basis for the scaling of dispersion coefficient with the 1.2 

power of flow velocity.  The researchers also demonstrated that flow reversal uniquely 

enables a crucial separation of irreversible and reversible contributions to mixing. The 

interpretation of laboratory and field experiments that include flow reversal provides 

important insight. Other advances include the miniaturization of long-lasting microprobes 

for in-situ, pore-scale measurement of tracers, and a scheme to account properly in a 

reservoir simulator (grid-block scale) for the contributions of convective spreading due to 

reservoir heterogeneity and of mixing.  
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EXECUTIVE SUMMARY 
 

Dispersive mixing has an important impact on the effectiveness of miscible floods. 

Despite decades of research into dispersion, it continues to present theoretical and 

conceptual challenges. Simulations of miscible transport processes generally assume 

Fickian representations of dispersion in which the dispersivity of the medium is 

considered constant. However, dispersivity is found to be dependent on the scale of 

measurement. A satisfactory method for accurate designing and performance prediction 

of field scale miscible displacement processes is yet to be developed.  

The main objective of this project was to perform experimental and computational 

studies to understand the basic mechanisms of dispersion and mixing at pore scale. The 

work covered four primary topics: development of microsensors to enable the direct 

measurement of the solute concentrations at the scale of individual pores; grain-scale 

evaluation of the origin of hydrodynamic from first principles of laminar flow and  

diffusion; theoretical evaluation of the effect of flow reversal as a means to distinguish 

the contribution convective spreading from that of true mixing to dispersion; and 

numerical evaluation of the field scale impact of permeability heterogeneity on 

hydrodynamic dispersion.  

This project yielded several important results. Foremost is the solution of a long-

standing challenge, namely, a physical explanation for the scaling of dispersion 

coefficient with the 1.2 power of flow velocity.  The model discussed in Topic 2 of this 
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report is the first a priori mechanistic prediction of this phenomenon. This represents a 

significant achievement and is destined to be a landmark in the study of flow and 

transport in porous media.  Another is the demonstration that flow reversal enables a 

crucial separation of irreversible and reversible contributions to mixing. The 

interpretation of laboratory and field experiments that include flow reversal provides 

important insight, as described in Topics 3a and 3b in this report.  Other advances include 

the miniaturization of long-lasting microprobes for in-situ, pore-scale measurement of 

tracers, described under Topic 1, and a scheme to account properly in a reservoir 

simulator (grid-block scale) for the contributions of convective spreading due to reservoir 

heterogeneity and of mixing, described under Topic 4.  
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Topic 1: Sensor development 

RESULTS OF WORK DURING REPORTING PERIOD 
 

Topic 1: Sensor Development 
 

1. MINIATURE NITRATE SENSOR DEVELOPMENT AND TESTING 
 
This section describes the efforts aimed at creating a miniature nitrate ion 

selective electrode (ISE) sensor to support the solute dispersion experiments. ISEs are 
potentiometric sensors, meaning that they operate by sensing a chemical potential as an 
electrical potential.  ISE sensors have been cast as problematic experimentally due to 
problems with signal drift (changing calibration) due to surface chemistry changes during 
the course of a measurement.  However, recent advances in materials science and organic 
chemistry have given rise to new types of conductive organic polymers, which have been 
used to develop a new generation of ISE-type sensors.  

In this work, ISEs were fabricated by electro-polymerization of conducting 
polymer doped with target ion (nitrate) on a carbon electrode, a well-known method 
(Hutchins and Bachas, 1995). First, different types of miniaturized ion selective 
electrodes (ISEs) were created and tested based on conducting polymers doped with 
nitrate ions were created. Structures for the key chemicals used in this work are shown in 
Figure 1.  One aspect of such ISEs that has not received much attention is their capacity 
to accurately measure concentrations in flowing water.  We characterized this aspect of 
these sensors and found them to lose sensitivity rapidly in flow-through systems.  In 
order to address the longevity problem, we tried to introduce a double layer-deposited 
coating process into the fabrication sequence. After attempting several types of layer 
applications, an insulated layer of bis-3.4-ethylenedioxyhtiophene (bis-EDOT) was 
successfully deposited atop the PPy surface in an effort to retain the dopant nitrate 
anions, which may be lost in flowing water. The resulting sensors exhibited good 
electrochemical characteristics in the laboratory. Flow-through water and soil-test bed 
experiments with conductive-polymer based sensors demonstrated that double-layer 
(Ppy+Bis-EDOT) sensor configuration was successful in improving the stability of the 
sensor relative to the single-layer sensor’s case.  However, the double-layer sensors failed 
to increase the longevity of the sensor beyond 1 or 2 days. Hence, after investigating the 
literature sources for possibility of using polyvinylchloride-based sensors with different 
membrane compositions for direct measurement of nitrate levels in soil we decided to 
change methods and use PVC membrane fabrication technology in order to obtain mini-
nitrate-selective electrodes suitable for flow-through experiments.  
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Figure 1. Monomers used in this study to create conducting polymers in single- 

and double-layer electrodes (L to R:  pyrrole, 3.4-ethylenedioxyhtiophene (EDOT), and 
bis-3.4-ethylenedioxyhtiophene (bis-EDOT)). 
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1.1 Single-Layer (SL) Nitrate Sensors Using Nitrate-Doped Polypyrrole (PPy) 

Initial efforts built on the foundational work by the UCM team using electro-
polymerization on a carbon substrate to create nitrate sensors (Bendikov et al., 2005; 
Bendikov and Harmon, 2005a).  This section describes the fabrication and calibration of 
these sensors, and their testing in flow-through systems. 

Analytically pure or higher grade reagents purchased from Fisher Scientific or 
Aldrich Chemicals were used to fabricate and test the nitrate sensors. Pyrrole was 
refrigerated in the dark and purified by passing through an alumina (Al2O3) column. 1 x 
10-2 M (NH4)2SO4 was used as ionic strength adjuster for the preparation of calibration 
solutions. Deionized water (Millipore, Milli-Q Academic A10 System, 18.3Ω) was used 
to prepare all standard solutions. Soft mechanical pencil leads (2B, Staedtler 0.5 mm, 
~2.5 cm long) were used as the electrode substrate. Electrochemical polymerization was 
carried out using a potentiostat/galvanostat (Princeton Applied Research, Model 363A). 
A three-electrode cell was used for preparing the modified electrode based on pencil lead 
as a working electrode and Ag/AgCl wire and Pt wire as reference and counter 
electrodes, respectively. Potentiometric measurements were conducted using a handheld 
multimeter (Fluke Model 111 True RMS). For longevity testing, a commercial data 
logger (Onset Computer Corp., Model U12) was used to observe in real time and record 
voltage time series. An Ag/AgCl saturated no-leak electrode (Cypress Systems Inc./ESA 
Model EE-0009) was used as a reference electrode in potentiometric cells.  

Doped PPy electrodes were prepared by binding pencil leads to a segment of a 
copper wire using a flexible, thin wire. Silver paint was applied to the connection area to 
guarantee a good contact between pencil lead and copper wire. A 1.5 cm length of the 
pencil lead was immersed to a 1M pyrrole solution (1.67 g of pyrrole mixed with 25 ml 
of 10-1 M NaNO3 solution) to perform electrochemical deposition of PPy. The total 
working (sensitive) surface of the electrode was 0.236 cm2. The solution was purged with 
nitrogen for at least 10 minutes before deposition to remove oxygen. The PPy was 
electro-polymerized using constant currents ranging from 400 to 700 µA (current 
densities from 1.69 to 2.97 mA/cm2 respectively for 20 minutes, about 480-840 mC). 
After polymerization the electrodes were rinsed with deionized water and placed into a 
conditioning solution (10-2 M NaNO3) for at least 24 hours prior to testing. Between the 
measurements electrodes were stored in the dark in 1 x 10-4 M NaNO3.  

 
1.2 Double-Layer (PPy-bPEDOT) Nitrate Sensors 

The main problem for practical application of PPy films is their environmental 
stability; PPy based sensors work well for static measurements when stored under 
optimal conditions, but degrade rapidly in open, flowing systems. In contrast, PEDOT-
based perchlorate sensors have exhibited much greater stability (Bendikov and Harmon, 
2005b). Unfortunately, our attempts to polymerize EDOT monomer in the presence of 
nitrate failed to yield usable quantities of PEDOT(NO3

-).   As a substitute for PEDOT, we 
selected bis-EDOT as an alternative monomeric unit of PEDOT (we refer to the resulting 
polymer as bPEDOT).   

1.2.1 Double-Layer (DL) Nitrate Sensor Fabrication Materials and Method 

 
8



Topic 1: Sensor development 

Bis-(3,4-ethylenedioxythiophene) (bis-EDOT) was synthesized by Ullmann-
coupling (Figure 2) using previously reported procedure (Sotzing et al., 1997).  To the 
best of our knowledge, bis-EDOT is the only thiophene derivative known to polymerize 
with nitrate as an electrolyte. While we were successful in polymerizing bis-EDOT with 
nitrate as supporting electrolyte, the resulting bPEDOT sensors did not respond to nitrate 
of over a sufficiently broad range of (Figure 2).  

S

OO

EDOT

S

O O bis-EDOT

S

OO
1. nBuLi THF -78oC

2. CuCl2 rt 12h

 
Figure 2. Synthesis of bis-ethylenedioxythiophene (bis-EDOT) after Sotzing et 

al., (1997), which was subsequently electro-polymerized to yield the conducting polymer 
bPEDOT.  

 
The inferior quality of the bPEDOT sensors led us to attempt to protect or 

enhance the PPy-active layer instead of seeking an alternative polymer.  More 
specifically, we hypothesized that the PEDOT layer would protect the PPy-active layer 
against rapid de-doping and other degradation mechanisms, such as abrasion by 
environmental media. Considering that PEDOT is known as an environmentally stable 
polymer (Vazquez et al., 2002), we tried coating the nitrate-doped PPy with PEDOT by 
polymerizing bis-EDOT with TBA-PF6 in AcCN. Preliminary testing suggested that the 
resulting ISE was functional and, in some cases, performed better than single-lager PPy 
ISE. Given this result, it was decided to further investigate this strategy by first 
fabricating the nitrate-doped single-layer (hereafter referred to as SL) electrodes, and then 
polymerizing a layer the nitrate-doped bPEDOT on top of the SL electrode. The resulting 
PPy-bPEDOT electrode is hereafter referred to as the double-layer (DL) sensor. 

The DL electrodes were prepared by first dipping SL electrodes (fabricated as 
described above) in acetonitrile (AcCN) for 10 seconds to minimize surface water 
content. The electro-polymerization solution contained 0.1 M tetrabutylammonium 
nitrate (TBANO3) and 0.01M bis-EDOT in anhydrous acetonitrile. The coating was 
performed in nitrate electrolyte using cyclic voltammetry (E0 = 0.7 V, E1 = 1.1 V, E2 = -
0.3 V, 10 cycles at scan rate 50 mV/s, Fc/Fc+ = 0.34 V) to create a nitrate-doped 
bPEDOT layer on top of the PPy layer. The resulting electrodes were then rinsed with DI 
water and conditioned for at least 24 hours in 10-2 M NaNO3.  Figure 3 contains a 
photograph of a DL sensor and a schematic diagram of its component parts. 
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Cu wire  
Pencil lead 

PPy (NO3
-)

bPEDOT (NO3
-) 

Silver paint

10-15 mm 

 
Figure 3.  Photograph (top) and schematic representation (b) of the miniature DL 

nitrate sensor (nitrate-doped PPy coated with a bPEDOT protective sheath). 

 
1.3 SL and DL Sensor Optimization and Calibration Results 
Key preliminary results aimed at optimizing the SL and DL sensor fabrication 

strategies are summarized in Figures 4 and 5. We determined that a DL ISE where the 
bPEDOT layer was obtained by 20 CV cycles has performance inferior to DL-ISE where 
the bPEDOT layer was obtained by 10 CV cycles. Scanning electron microscopy (SEM) 
images taken for both SL and DL (10 cycles) may shed some light on this observation 
(Figure 4). PPy layer is characterized by a cauliflower-like morphology (Figure 4, top 
left) while the bPEDOT second layer (Figure 4, top right) appears as isolated zones 
which do not cover the entire surface and probably allows the movement of ions and 
preserve its sensitivity. If one compares the thickness of the layers on SEM images 
(Figure 4, bottom left), PPy layer (650 mC) appears to be about 6 µm while the bPEDOT 
layer is only about 0.2 µm.  

To optimize the electro-polymerization process, we explored the effect of doped 
PPy sensing layer thickness in both the SL and DL versions of the sensor (Figure 5). The 
results indicate that the sensor based on bPEDOT alone is only slightly sensitive to 
nitrate, while the SL sensor with a relatively thick PPy layer (polymerization time 20 
min) resulted in the best response over the range of nitrate concentrations tested.  After 
exploring a range of fabrication combinations (PPy electropolymerization time and 
bPEDOT CV cycles), DL sensor configurations were discovered which did demonstrate 
comparable responses to the SL sensors, particularly for PPy polymerization times of 15 
min or greater. 
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10 m 

5 m 

10 m

100 m

 
Figure 4. SEM images of pencil lead-based nitrate sensors showing the surface of 

SL (PPy) (top left) and DL (PPy-bPEDOT) (top right). Higher resolution images of the 
DL interfaces (bottom left) and a cross-section of a DL on a pencil-lead (bottom right) 
demonstrate the sensor geometry and the total thickness of the conductive polymer 
double-layer of about 6 µm.  

 
All SL electrodes were calibrated using standard sodium nitrate solutions, then a 

subset was prepared for application of the second (bPEDOT) layer described in the 
following section. Calibration curves for optimized SL and DL sensors are plotted in 
Figure 6. The electrodes exhibit near-Nernstian response (better thans -52 mV/decade 
change in NO3

- concentration) with linear range 0.01-100 mM (0.62-6200 ppm) NO3
- and 

detection limit (3±1) x 10-6 M (0.124-0.248 ppm). Response times for the electrodes were 
30-35 sec at lower nitrate concentrations (0.001 to 1 mM) and less than 20 sec for higher 
concentrations (1 to 100 mM).   
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50

150
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350

450

012345
-log (Nitrate Concentration)

DL 5min; 10cyc  -39.9 (0.987)

DL 10min; 10cyc   -46.4 (0.987)

DL 15min; 10cyc   -45.0 (0.971)

DL 20min; 10cyc   -45.4 (0.977)

SL 20min   -49.5 (0.993)

bPEDOT only  -24.0 (0.942)

  
Figure 5. The influence of fabrication technique DL (PPy + bPEDOT) sensor 

calibrations; SL and bPEDOT-only sensor data are provided for comparison (legend 
values are (L to R): (1) duration of PPy electro-polymerization, (2) number of CV cycles 
for bPEDOT layering (for DL sensors), (3) slope of trend line, and (4) correlation 
coefficient (r2)). 

 
The stability of SL and DL nitrate sensor prototypes was tested over a period of 

two months with sensor storage in a 10-2 M NaNO3 solution in the dark between 
measurements (Figure 7). Both types of sensors continued to respond in a Nernstian 
manner after two months.  The SL appeared to lose some sensitivity at the dilute end of 
the calibration range.  The aged DL exhibited a pronounced shift in response, but 
otherwise maintained its dynamic range.   These results suggest that the addition of the 
bPEDOT layer may be protecting the underlying PPy layer against degradation over time. 
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012345

SL-1   slope -54.6 (0.997)

SL-2   slope -53.9 (0.996)
SL-3   slope -52.7 (0.991)

DL-1   slope -54.0 (0.989)
DL-2   slope -55.0 (0.986)

DL-3   slope -56.3 (0.986)

  
Figure 6. Calibration results for triplicate batches of SL and DL nitrate sensors 

with optimal fabrication conditions (current density 2.33 mA/cm2 for 20min PPy 
electropolymerization for both SL and DL; 10 cyc bPEDOT layer application for DL 
(note:  see appropriate text sections for SL and DL fabrication procedures).  
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-log (Nitrate Concentration)

DL 2 days:  -45.4 (0.977)
DL 66 days: -45.2 (0.996)
SL 2 days: -49.6 (0.994)
SL 66 days: -40.7 (0.994)

 
Figure 7. Testing SL and DL sensor stability under optimal storage conditions 

(room temperature, sealed analyte solution, in the dark); fabrications conditions described 
in previous figure. 
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1.4 Results for SL and DL Sensors in Flow-Through Systems 

The results for the SL sensor response to pulsed nitrate injections in a flowing 
stream are plotted in Figure 8. It is worth noting that the flow field for the experiments 
was three-dimensional and somewhat variable causing poor reproducibility of the 
injection pulse geometry. Positive responses by the sensors to pulse injections were 
identified as substantial voltage drops (50 to 100 mV) regardless of the response 
geometry. Hence, the results reported here should be considered semi-quantiative with 
the primary intent of the experiments to identify potentially long-lasting sensors (> 3 
days) under simulated environmental conditions.  The recovery time (period after each 
spike when the potential of the electrode returns to the baseline value) was approximately 
20-30 minutes (depending on the flow rate) for all electrodes suggesting that their 
response occurred on a shorter timescale than did the dilution rate for the flow-through 
system. This is evident in the differences in the two early time responses of the sensors to 
approximately identical to the pulse injections.  

Unfortunately, neither the SL nor DL sensor configuration approached the desired 
longevity.  Furthermore, in spite of their strong stability between calibrations, both 
versions of the sensor exhibited significant calibration drift during the flow-through 
experiments, demonstrated by the more gradual changes in voltage between spiking 
events. 

In the early stages of the experiment (roughly the first 6 hours), the commercial 
and SL sensors respond similarly to two pulse injections. The commercial sensors 
maintain a better baseline potential in the absence of injections, however, with the SL 
sensors exhibiting significant upward signal drift after the second pulse followed by 
downward signal drift after about 12 hours. The SL sensor failed to respond to the pulse 
injection at approximately 19 hours. The passivation of the SL electrodes might be 
caused by de-doping of PPy matrix in the continuous water stream, or degradation of the 
PPy polymer.  We attempted to analyze both freshly prepared and spent PPy membranes 
for nitrogen content using transmission electron microscopy (TEM), but could not 
sufficiently resolve nitrogen levels either samples.  Thus, while the extension of longevity 
caused by the DL method is consistent with either the de-doping or PPy membrane 
degradation reasons, direct evidence of the passivation mechanism is lacking, and merits 
additional investigation given that environmental application of such sensors will often 
be in the context of flowing fluids. 

The role of the bPEDOT in extending the stability or longevity of the DL 
electrodes was also tested in flow-through system (Figure 8). The DL sensor response 
dynamics differed in this case relative to the SL sensor. First and most importantly, the 
DL sensor maintained a steady baseline response between pulses and responded well to 
both nitrate pulses introduced more than 24 h after the start of the flow experiment. This 
result indicates that the DL configuration was successful in improving the stability of the 
sensor relative to the SL case. Second, while the DL sensor exhibited a similar voltage 
drop associated with the pulse nitrate solution injections, it also exhibited a temporary 
increase in voltage (relative to the baseline response) after the pulse.  The SL sensor did 
not exhibit this latter behavior. The cause of this spike in voltage is unknown and its 
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duration ranged from roughly 4-6 hours after the first injection to less than an hour in 
subsequent injections. 

 
Figure 8. Continuous flow experiment with SL (PPyNO3) (top) and DL 

(PPyNO3-bPEDOT) (bottom) nitrate-selective microsensors and commercial sensors 
(sampling rate 30 sec; arrows denote times of pulse nitrate additions to the flowing 
stream). 

 
1.5 PVC-Based Nitrate Mini-Sensors 

This section describes the final effort aimed at improving the stability of the 
nitrate sensors, and represents a complete change of direction toward a polyvinyl chloride 
(PVC) based sensor.  The PVC-based sensor fabrication technique is different from the 
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electro-polymerization technique we employed for the PPy-version of the microsensors, 
and is essentially the type of sensor being fabricated by industry in most cases. The 
advantages of the PVC-based sensors is that they are purportedly more stable than those 
described in the previous section for conducing organic polymers.  One drawback, 
however, is that the fabrication process for the PVC sensors fabrication technique 
(evaporation) does not lend itself to the efficient miniaturization which was possible via 
the electro-polymerization process. Fortunately the solve evaporation strategy is used in 
commercial chip manufacturing and it is anticipated that these techniques could be 
applied to PVC-based sensors if they prove useful and stable enough for long-term 
deployments.  

1.5.1 PVC-Based Nitrate Sensor Fabrication and Calibration 

For sensors with PVC membranes, a mixture of polyvinylchloride (membrane 
matrix), plasticizer, and electroactive (ionophoric) substance (in this case, the quaternary 
ammonium ion) is dissolved in tetrahydrofuran (THF). The solvent is then evaporated off 
the mixture, leaving a membrane behind that is selective for nitrate.   In this case, the 
quaternary ammonium in the PVC membrane serves as an ion exchange site, which is 
selective for nitrate. 

The advantages of the PVC-based sensors is that they are purportedly more stable 
than those described in the previous section for conducing organic polymers.  One 
drawback, however, is that the fabrication process for the PVC sensors fabrication 
technique (evaporation) does not lend itself to the efficient miniaturization which was 
possible via the electro-polymerization process. Fortunately the solve evaporation 
strategy is used in commercial chip manufacturing and it is anticipated that these 
techniques could be applied to PVC-based sensors if they prove useful and stable enough 
for long-term deployments.  

Each PVC sensor must be coupled with 
commercial mini-reference electrode (ESA Inc., 
no leak model). The commercial (Sentek) 
sensors are 11 cm long and 12 mm in diameter, 
while each of PVC membranes is 5 cm long, 5.8 
mm in diameter (Figure 9).  

Figure 9. Fabricated PVC-based mini-
ISE nitrate sensors (required reference electrode 
is not shown). 

Outdoor/industrial data loggers (wired 
(HOBO Outdoor industrial U12-008, Onset Computer Corp.) and wireless (HOBO 
weather station) were used to obtain real-time data from each potentiometric cell. The 
mini-sensor output requires some electronic conditioning to make it compatible with the 
commercial dataloggers.  We designed a circuit consisting of voltage follower, stabilizer 
(minimizes battery aging), voltage adder and 2 rechargeable batteries (2600 mAh).  We 
successfully tested a prototypical circuit (Figure 10) and are now consulting with a 
commercial PCB fabrication vendor in order to design and produce small, inexpensive 
(on-a-chip) versions of this circuit.   
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Figure 10. Basic configuration of the LMC6001 amplifier acting as a voltage 

follower for the PVC-based nitrate ISE sensors. 
 
 
In terms of calibration, the PVC-based sensors performed as well or better than 

best commercial PVC sensors we located (Sentek DirectIon Sensors, UK), yielding 
similar calibration ranges and detection limits in all cases.  However, PVC-based sensors 
typically exhibit some temperature-dependency with respect to calibration, and our 
sensors were no exception.  The next section presents the results from the flow-through 
experiments, while the subsequent section addresses the temperature-dependency of the 
sensors. 

1.5.2 PVC-Based Nitrate Sensor Testing in Flow-Through Systems 

Given that commercial sensors are available for PVC-based nitrate sensors albeit 
relatively large and expensive ones, we were able to compare our sensors’ performance to 
that of the commercial sensors in the flow-through experiments.  Nitrate mini-sensors 
with PVC membranes showed very similar response under tap water flow conditions 
compared to commercially available sensors (Figure 11): both types of sensors clearly 
respond to nitrate standard (10-2 M NaNO3) periodically introduced into the system, 
“home-made” mini-sensors maintained their sensitivity for 3 days of continuous exposure 
to tap water flow conditions. Sensors responded to incorporated nitrate standard in a 
similar manne: the voltage drop for CENS made sensors is 35-40 mV from the baseline, 
for commercial sensors it is 25-35 mV. Overall potential drift (within the baseline) did 
not exceed 5-7 mV for both types of sensors throughout the entire length of the 
experiment. 

When we moved on to a soil test-bed, CENS-made sensors exhibited better 
response to nitrate standard pulses than did the commercially available sensor (Figures 
12, 13): potential reading for both CENS-made mini-nitrate sensors return to a baseline 
(‘recover”) after sensors react to incorporated nitrate standard, commercial sensor, 
however, does not seem to “recover” completely (sensor reading do not come back to the 
baseline values). 
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Figure 11. Testing nitrate mini-sensor prototypes under tap water flow conditions 
(1.5 l/min flow rate, each drop in voltage readings indicates nitrate standard 
addition to the flowing stream) 
 
 
 

 
 
Figure 12. CENS made nitrate 
mini-sensors and commercial sensor 
in soil test-bed: typical laboratory 
setup  

 
Figure 13. Results of soil test-bed experiment 
comparing CENS fabricated nitrate mini-sensors 
with PVC membranes and commercial sensor 
(nitrate standard was introduced to the system at 
roughly 72 h) 

 
1.5.3 PVC Nitrate Mini-Sensor Temperature-Dependency 

It is well-known that ISE responses are temperature dependent, and PVC-based 
sensors are no exception. According to Nernst equation, corresponding shifts in slope of 
sensor’s calibration curve for single charged ions are 2 mV per 10 °C. However, 
depending on the sensor materials, the actual affect of temperature changes may be 
greater.  We undertook a laboratory investigation of the temperature dependency of 
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nitrate sensors by calibrating them with standards maintained over a range of 
temperatures.  Results for multiple nitrate sensors are plotted in Figure 14. 
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Figure 14.  Calibration curve response factor (slope, plotted at left) and offset 
(intercept, plotted at right) for quadruplicate nitrate sensors as a function of temperatures. 

 
The results suggest a nonlinear response of slope to temperature by the sensors, 

with new sensors exhibiting a more prominent temperature effect.  For the intercept 
values, the temperature effect is more linear, with the slope inversely related to 
temperature.  Again, the effect is more pronounced for newer sensors. 

 
The curves in Figure 14 can be parameterized using linear or polynomial fits, and 

used to correct field sensor data for temperature.  The results in Figure 15 validate the 
temperature correction 
algorithm. In this 
experiment, the nitrate 
sensor was immersed 
in a single standard 
concentration while 
temperature was varied 
over a broad range (10 
to 30 deg C).    
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Figure 15. Results from experiment to validate temperature-correction algorithm for the 
nitrate sensors (10-4 M nitrate solutions was exposed to step changes in temperature: solid 
line is nitrate sensor response; symbols denote temperature). 

 
1.6 Summary and Conclusions 
Ion selective electrodes (ISEs) were fabricated by electro-polymerization of 

conducting polymer doped with target ion (nitrate) on a carbon electrode, a well-known 

 
19



Topic 1: Sensor development 

method (Hutchins and Bachas, 1995). First, different types of miniaturized ion selective 
electrodes (ISEs) were created and tested based on conducting polymers doped with 
nitrate ions were created. Second, in an attempt to address stability/longevity issues with 
this version of the nitrate sensor, an insulating layer of bis-3.4-ethylenedioxythiophene 
(bis-EDOT) was deposited on the PPy surface in an effort to retain the dopant nitrate 
anions, which may be lost in flowing water. Third, after investigating the literature 
sources for possibility of using polyvinylchloride-based sensors with different membrane 
compositions for direct measurement of nitrate levels in soil we decided to change 
methods and use PVC membrane fabrication technology in order to obtain mini-nitrate-
selective electrodes suitable for long-term flow-through experiments.  All sensor versions 
were tested in batch and flow-through experiments with respect to their capacity to 
reproducibly quantify nitrate concentrations in static and moving systems over time. 

The main conclusions with respect to the potentiometric nitrate mini-sensor 
development are as follows: 

 Polypyrrole-based (PPy) nitrate sensors are relatively easy to fabricate and work 
well in batch settings, particularly if they can be stored in dilute nitrate solutions 
(10-4 M) between usages.  These sensors can last up to about 6 months under these 
conditions.   

 PPy nitrate sensors consistently fail under dynamic (flow-through) sampling 
conditions.  The typical results will suggest reasonably accurate detection of nitrate 
levels in flowing water, followed by signal deterioration (sensitivity loss) on a time 
scale of hours.  Hence, PPy nitrate sensors are unsuitable for use in most flow-
through experiments.   

 The cause for the loss of sensitivity in the PPy is unknown, but is suspected to be a 
result of significant loss of the dopant ion (nitrate) from the PPy membrane.  

 Application of an insulating sheath of bis-3,4-ethylenedioxythiophene (bPEDOT) 
increased the longevity of the PPy based nitrate sensors by a factor of 
approximately 1.5 in flow through systems.  However, these sensors require a 
significantly greater fabrication effort, which may not be worthwhile give the 
relatively modest absolute increase in sensor longevity they provide. 

 Polyvinyl chloride (PVC) nitrate sensors based on a quaternary ammonium 
ionophore were successfully fabricated and show promise for use in observing 
nitrate in flow-through systems.  These sensors are easy and inexpensive to 
fabricate, but require a voltage follower to condition the signal to a state that is 
readable by most commercial data-logging devices.  An inexpensive voltage 
follower was designed and fabricated and has been successfully tested.   
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Topic 2: Grain-scale origin of hydrodynamic dispersion  
SUMMARY 

We study dispersion in porous media by tracking movement of a swarm of solute 
particles through a physically representative network model. We developed deterministic 
rules to trace paths of solute particles through the network. These rules yield flow 
streamlines through the network comparable to those obtained from a full solution of 
Stokes’ equation. In the absence of diffusion the paths of all solute particles are 
completely determined and reversible. We track the movement of solute particles on 
these paths to investigate dispersion caused by purely convective spreading at the pore 
scale. Then we superimpose diffusion and study its influence on dispersion. In this way 
we obtain for the first time an unequivocal assessment of the roles of convective 
spreading and diffusion in hydrodynamic dispersion through porous media. Alternative 
particle tracking algorithms that use a probabilistic choice of an out-flowing throat at a 
pore fail to quantify convective spreading accurately.  

For Fickian behavior of dispersion it is essential that all solute particles encounter 
a wide range of independent (and identically distributed) velocities. If plug flow occurs in 
the pore throats a solute particle can encounter a wide range of independent velocities 
because of velocity differences in pore throats and randomness of pore structure. Plug 
flow leads to a purely convective spreading that is asymptotically Fickian. Diffusion 
superimposed on plug flow acts independently of convective spreading causing 
dispersion to be simply the sum of convective spreading and diffusion. In plug flow 
hydrodynamic dispersion varies linearly with the pore-scale Peclet number.  

For a more realistic parabolic velocity profile in pore throats particles near the 
solid surface of the medium do not have independent velocities. Now purely convective 
spreading is non-Fickian. When diffusion is non-zero, solute particles can move away 
from the low velocity region near the solid surface into the main flow stream and 
subsequently dispersion again becomes asymptotically Fickian. Now dispersion is the 
result of an interaction between convection and diffusion and it results in a weak non-
linear dependence of dispersion on Peclet number. The dispersion coefficients predicted 
by particle tracking through the network are in excellent agreement with the literature 
experimental data.  

We conclude that the essential phenomena giving rise to hydrodynamic dispersion 
observed in porous media are (i) stream splitting of the solute front at every pore, thus 
causing independence of particle velocities purely by convection, (ii) a velocity gradient 
within throats and (iii) diffusion.  Taylor’s dispersion in a capillary tube accounts for only 
the second and third of these phenomena, yielding a quadratic dependence of dispersion 
on Peclet number. Plug flow in the bonds of a physically representative network accounts 
for the only the first and third phenomena, resulting in a linear dependence of dispersion 
upon Peclet number.  

 
Introduction 

Traditionally, mixing in single-phase flow through a porous medium is quantified 
by a dispersion coefficient obtained from the flow-averaged (“cup-mixed”) effluent 
concentration history (Lake 1989). The dispersion coefficient describes apparent mixing 
because it is averaged over the entire outlet and has contributions (in inseparable form) 
from (i) convective spreading (also called mechanical dispersion), caused by variations in 
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path lengths and velocities of solute particles traveling along different streamlines and (ii) 
molecular diffusion.   

Despite decades of research there remain questions about the nature and origin of 
dispersion. It is well accepted in the literature that convective spreading is orders of 
magnitude larger than diffusion. Is dispersion predominantly an artifact of convective 
spreading and diffusion categorically negligible (Coats et al. 2004), or does the role of 
diffusion become important in one limit or another?  

The main objective of this paper is to explain core-scale dispersion from pore 
scale physics. We investigate dispersion by tracking the motion of a swarm of particles 
through granular porous medium. The flow paths through the medium are computed 
using a physically representative network model. We developed deterministic rules to 
trace solute particle’s path from the inlet of the medium to its outlet. Because the rules 
are deterministic, the paths of solute particles are completely known in absence of 
diffusion. It also ensures that the flow paths are reversible, that is, upon reversal of the 
flow direction each particle will exactly retrace its path back to the inlet. Upon flow 
reversal convective spreading gets cancelled and echo dispersion is zero (Jha et al. 2006, 
John et al. 2008)). Our algorithm captures the essential features of convective spreading 
and allows us to investigate it explicitly and rigorously in a realistic pore space. To the 
best of our knowledge it has not been previously attempted. We show that the paths of 
arbitrarily close pairs of particles become independent relatively quickly even in the 
absence of diffusion and even after accounting for spatial correlation of pore structure.  

Next, diffusion is superimposed and movement of solute particles because of 
combined effects of convection and diffusion is monitored. Dispersion is quantified from 
spatial and temporal statistics of solute particles. With this framework we can 
quantitatively investigate the influence of increasing diffusion on dispersion. We explain 
the origin of core scale dispersion in terms of the interaction between convection and 
diffusion. The method predicts a priori the correct power law dependence of dispersion 
coefficient on pore scale Peclet number. All our predictions are consistent with the 
experimental results reported in the literature. Models more sophisticated than ours, e.g. a 
direct solution of the Stokes (or Navier-Stokes) equation in the pore space of a granular 
material coupled with a solution of the convection-diffusion equation, would also predict 
core-scale dispersion correctly. We propose that ours is the simplest model that captures 
the essential physics.  

 
Model Development 

Physically Representative Network Model.  Pore-network modeling is an 
important tool that provides a link between continuum (core) scale properties of a porous 
medium and the pore scale physics. In a network model the pore space is discretized into 
a set of pores (nodes) connected by pore throats (bonds). Since it is very difficult to 
explicitly capture the details of pore geometry, most of the network models reported in 
the literature make some simplifying assumptions. Common assumptions include same 
length for all the throats and regular network lattice. Throat radii are often picked 
randomly from an assumed distribution. For example, Acharya et al. (2007) and Bruderer 
et al. (2001) assumed uniform and a log-uniform distribution of throat radii respectively. 
Bijeljic et al. (2004) used a more realistic throat distribution obtained from Berea 
sandstone and satisfactorily predicted dispersion coefficient for a wide range of pore 
scale Peclet numbers.  
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All of the above mentioned assumptions are found to be invalid in realistic pore 
space, even in relatively simple porous media (Bryant et al. 1993). Picking bond radii 
randomly from a distribution disregards spatial correlation in the bond conductances. 
There is a strong correlation in bond conductances in a realistic porous medium, even 
though it exists for a short distance (Bryant et al. 1993).  This correlation has significant 
impact on permeability and dispersion through the medium which cannot be neglected 
(Bryant et al. 1993, Jha 2008).  Therefore, we adopt the approach of physically 
representative network models, which replicate the pore space more closely. In this work 
we use a computer generated dense random packing of 10000 spheres as a model porous 
medium (Thane 2006). Such packings capture essential geometric and topologic features 
of sediments. The radius and the center coordinates of each sphere are known which 
completely determines the micro-structure of the medium (Fig. 1). The radius of each 
sphere is 2.1918 × 10-4 m. The medium is about 34 sphere diameters long in the z-
direction and 17 sphere diameters long in x and y directions. The porosity of the medium 
is 36%.  

From this data we prepare a physically representative network model that has pore 
bodies located at the same spatial positions as the pores in the actual medium. Moreover, 
the bonds connecting neighboring pores have the same conductances as in the actual 
medium. Thus a physically representative network model preserves the geometry, 
topology and spatial correlation in flow properties. It is three dimensional and 
unstructured.  

 
Evaluating Bond Conductances and Obtaining Flow Rates.  Delaunay 

tessellation is an unambiguous way of dividing the sphere packing into cells called 
Delaunay cells. Delaunay tessellation groups together sets of four nearest spheres and 
thus a Delaunay cell in three dimensions is a tetrahedron (Fig. 2a). The vertices of a 
Delaunay cell lie at the centers of the four spheres forming that cell.  

The interior of the cell encloses a region of void space identified as the pore body. 
The geometric center of the Delaunay cell can be considered as the pore center. Each face 
of a Delaunay cell is a plane of maximum constriction and represents a narrow entrance 
to the pore body (Fig. 2b). Since each cell is a tetrahedron, every pore has four faces or 
throats connecting it to four neighboring pores.  

Two pores are connected by a path of converging-diverging cross-section (Fig. 
3a). The flow conductance of the path is governed by the narrowest constriction in the 
path.  Figure 3b shows a cell face shared by two neighboring cells (pores). The cell face 
represents the narrowest constriction in the flow path connecting the two pores. The 
figure also shows two circles that approximate the narrowest constriction. rc is the radius 
of the largest circle that can be fit in the narrowest constriction and re is the radius of the 
circle having the same area as the narrowest constriction. If the constriction radius is 
approximated by rc, the path (or bond) conductance is underestimated since some area 
available for flow in the constriction is not taken into consideration. On the other hand, if 
the constriction radius is approximated by re, the path (or bond) conductance is 
overestimated because for a given area a circle provides the least resistive path for 
viscous flow. The arithmetic average of the two radii a good estimate of the effective 
radius of the bond connecting the two neighboring pores reff = (re + rc)/2 (Bryant et al. 
1993). For the purposes of computing flow, we replace the converging-diverging 
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geometry of each throat with a cylindrical bond of radius reff.  This idealization proves to 
preserve the essential features of the local flow field while enormously simplifying the 
flow dynamics. 

The conductance of the bond connecting the two neighboring pores is given 
by 4 / 8effg r lπ µ= , where µ is the fluid viscosity and l is the distance between the pore 
centers.  

A schematic of the network is shown in Fig. 4a as a network of electrical 
resistances. The location of every pore body (bond junction) and conductance of bonds 
connecting it to its neighbors have been calculated. We apply a potential gradient across 
the network. The side boundaries of the network are sealed. Then we write the mass 
balance equation at each pore. Imposing steady state (no mass accumulation at any pore) 
results in a set of linear equations and we can solve for potential at each pore (Fig. 4b). 
After knowing the potentials, the flow rate through any bond can be easily calculated as 
follows:  

  Pgq ∆=

Rules for Particle Tracking 
Particle Movement in the Network in Absence of Diffusion.  Bonds in a 

physically representative network model connect centers of pairs of adjacent pores. Since 
the bonds have nonzero radii, the four bonds originating at the center of a pore 
necessarily overlap (Fig. 5). Overlapping bonds may seem unphysical. However, bonds 
are not to be considered in completely literal sense. It is a way to model flow from one 
pore to another. We track particle movement through the network of overlapping bonds. 
We neglect momentum loss and mixing in the overlapping region and discount bond 
lengths in the overlapping region in calculation of the local Peclet numbers. This simple 
model yields an accurate a priori prediction of the permeability of the sphere packing 
(Bryant et al. 1993). 

In absence of diffusion, a solute particle moves in a bond parallel to its axis. After 
reaching the outlet face of the bond at a pore center, the particle will enter one of the out-
flowing bonds originating at that pore center. One of the most common simplifying 
assumptions made in particle tracking through a network model is the probabilistic choice 
of an out-flowing bond. A solute particle arriving at a pore body (junction of bonds) is 
assigned to an out-flowing bond randomly with a flow rate weighted probability. 
However, probabilistic choice of out-flowing bond is not realistic as it makes dispersion 
an irreversible process even in absence of diffusion. Moreover, it ignores spatial 
correlation in bond conductances which is one of the key features of the physically 
representative network models (Jha 2008).  Therefore, convective spreading cannot be 
modeled correctly with this approach. 

To avoid these problems we developed deterministic rules to decide an out-
flowing bond and to map the entrance point of the solute particle on this bond. The rules 
are based on the patterns followed by streamlines and described briefly below. The 
physical and geometric details are less important than the principal logical feature of the 
rules: at every pore center the rules establish a one-to-one mapping from points on the 
outlet face(s) of in-flowing bond(s) to points on the inlet faces of out-flowing bond(s). 
Thus when the direction of flow is reversed, a particle retraces its flow path exactly in the 
absence of diffusion. A direct calculation of the flow field would eliminate the need for 
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the rules. However, it is not convenient and practical to resolve flow field accurately for 
the entire domain which contains about 35,000 pores. 

After reaching the outlet face of the bond at a pore body, the particle immediately 
jumps to the inlet face of the next out-flowing bond (decided from the deterministic 
rules). This causes a small discontinuity in the path of the particle because of overlapping 
of bonds in the region near the pore body. Discontinuities are small as compared to the 
path length. Moreover, effect of discontinuities on particle statistics accumulated over 
several pores tends to get cancelled. Thus the particle statistics is not affected by these 
discontinuities (Jha 2008). 

Particle continues its motion through successive bonds to the outlet of the 
network.  

  
Deterministic Rules for Mapping a Entrance Point of a Particle on an Out-
Flowing Bond 

A particle enters the pore through an in-flowing bond and it leaves through an 
out-flowing bond. The task is to develop rules for calculating which out-flowing bond 
will be the exit and to map the entrance point of the solute particle on the out-flowing 
bond. Here we describe a simple and computationally tractable approach for this purpose.   

We identify six flow configurations feasible at a pore body. In each case, we 
figure out splitting of streams based on the flow configuration and flow rates. This tells 
us a solute particle exiting an in-flowing bond at a particular point will enter which 
segment of which out-flowing bond. In each case we calculate some reference points that 
serve as guiding points to map the exact entrance position of solute particle on the out-
flowing bond. 

For ease of illustration and for calculating reference points, we displace all the 
bonds along their axes by equal distance. The displacement should be enough to remove 
overlap between the bonds. After identifying flow configuration and calculating reference 
points, all the bonds are moved back to their original location.  

The bonds are numbered according to their flow rates. Inflow is assigned positive 
sign and outflow negative. Then flow rates are sorted in descending order along with 
their sign. Thus the first bond is the one carrying maximum inflow and the fourth one is 
carrying maximum outflow.  The first bond is taken as the reference bond. The distances 
of the face centers of all the bonds from the face center of the first bond are calculated. 
The closest bond will have the biggest influence on flow. 

 
Configuration 1: One In-Flowing and Three Out-Flowing Bonds.  In this case 

one in-flowing bond feeds all the out-flowing bonds. Therefore, the incoming stream 
splits into three segments based on the flow rates of the three out-flowing bonds (Fig. 
14a).  

For example, in Fig. 14a the fourth bond is closest to the in-flowing bond and the 
third bond is the farthest.  First, we find (numerically) the pair of points on the first and 
fourth bond faces that are closest to each other. These are reference points (reference 
point 1 on bond 1 and reference point 6 on bond 4). A solute particle exiting bond 1 at 
reference point 1 on bond 1 will enter bond 4 at reference point 6. These reference points 
also guide mapping of other points.  
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Starting with reference point 1, we mark a segment of in-flowing bond that carries 
same flow rate as the out-flowing bond 4. A solute particle exiting bond 1 from this 
segment will enter bond 4.  

Similarly, we mark a middle segment of the in-flowing bond that carries the same 
flow rate as the farthest out-flowing bond.  A solute particle exiting the in-flowing bond 
on the middle segment will enter the farthest bond. Solute particle exiting bond 1 on the 
remaining third segment of the in-flowing bond will enter the second bond.  

Reference point 2 on the in-flowing face is taken as point where the line joining 
reference point 1 to the center of the face intersects the boundary of the first segment. 
Reference point 3 is diametrically opposite of the reference point 1. Reference point 4 is 
the point on tube 2 that is closest to reference point 3. Similarly, reference point 5 is the 
point on tube 3 that is closest to reference point 2. 

 
Configuration 2: Three Bonds Flowing In, One Flowing Out.  This 

configuration is exactly opposite of the configuration 1 (Fig. 14b). Three in-flowing 
bonds feed to one out-flowing bond. Therefore, the out-flowing stream consists of three 
segments, each segment receiving flow from one of the in-flowing bonds. The procedure 
described for connecting segments and calculating reference points in configuration 1 is 
applicable in this case also.  

There are more than one possible flow configurations when we have two in-
flowing and two out-flowing bonds at a pore junction.   

 
Configuration 3: Third Bond is the Farthest and Flow in First Bond is 

Smaller than that in the Fourth Bond.  Since flow rate in the first bond is smaller than 
that in the fourth bond, the fourth bond has to receive flow from both the in-flowing 
bonds. Since some streamlines move from bond 2 to bond 4 and streamlines cannot cross, 
no streamline can move from bond 1 to bond 3.  Therefore, bond 3 will get all its flow 
from bond 2 and all of flow from bond 1 will go to bond 4.  

Marking of segments and calculations of reference points is similar to that described for configuration 
1.  

 
Configuration 4: Third Bond is the Farthest and Flow in First Bond is 

Greater than that in the Fourth Bond.  It is similar to the configuration 3, except that 
in this case the flow in the first bond is larger than that in the fourth bond. In this case the 
fourth bond receives all its flow from bond 1 and all of the second bond’s flow enters the 
third bond. The first bond feeds to both the out-flowing bonds. 

 
Configuration 5: Fourth Bond is the Farthest.  Since flow rate in the fourth 

bond is greater than that in the second bond, the fourth bond receives flow from both the 
inflowing bonds. Since streamlines cannot cross, flow from the second bond cannot enter 
the third bond. Hence, all the flow from the second bond enters the fourth bond. Also the 
third bond receives all its flow from the first bond. As evident from Fig. 14e, bond 1 
feeds to both the out-flowing bonds and bond 4 receives flow from both the in flowing 
bonds.  

 
Configuration 6: The Second Bond is the Farthest.  In this configuration the 

farthest bond is in-flowing. Or in other words, the second bond is the farthest. In this 
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case, both the inflowing bonds will feed to both the out-flowing ones as shown in Fig. 
14f.   Flow segments and reference points are calculated as described previously. 

The reader is referred to Jha (2008) for calculation details. 
 

Mapping an Incoming Point to an Out-flowing Bond 
After deciding the incoming and outgoing segments of the bonds, we have to map 

the incoming point to a corresponding point on the outgoing section. Incoming and 
outgoing sections are arbitrary sections of a circle. We impose geometric rules that are 
physically reasonable: (i) reference point on the in-flowing segment will connect to the 
corresponding reference point on the out-flowing segment and (ii) center of the incoming 
segment connects to the center of the outgoing segment. We take center of the circular 
segment as its geometric center (or center of gravity). We call the vector joining the 
reference point to the center of the segment the “reference vector”. We mark reference 
vectors on incoming as well as outgoing segments (Fig. 15). 

In polar coordinate system, two parameters are sufficient to describe the outgoing 
point (i) the angle the position vector of the outgoing point (here defined with reference 
to the center of the segment) makes with the reference vector and (ii) its relative radial 
distance from the center (defined as distance of the point from the center normalized by 
distance to boundary in that direction).  We impose another geometric rule: these 
parameters for the outgoing point have the same value as that for the incoming point. 
Therefore, we evaluate the angle θ, the position vector of incoming point makes with the 
reference vector on the incoming segment and relative radial distance of the point from 
the boundary, r/R. Here r is the distance of incoming point from the center and R is 
distance from the center to the boundary of the segment.   We place the outgoing point at 
the same θ and r/R on the outgoing section (Fig. 15). This rule provides a deterministic, 
one-to-one mapping between exit and entrance points.  

 
Particle Tracking in a Bond with Convection and Diffusion.  The motion of a 

solute particle in a bond in presence of diffusion is divided into small time steps of equal 
duration dt. We split each step into a convection-only displacement followed by an 
instantaneous diffusive jump. The magnitude of convection-only displacement is equal to 
the product of fluid velocity at that location and the duration of time step. The direction 
of convection-only step is parallel to the bond axis. In the diffusive step, particle moves 
in a random direction on the surface of a sphere with radius  dtDr odiff 6=  (Bruderer 
and Bernabe 2001), where Do is the diffusion coefficient. The particle’s diffusive 
displacement in Cartesian coordinate system is given by (Bijeljic et al. 2004): ∆x=rdiff 
cosθ sinφ, ∆y=rdiff sinθ sinφ and ∆z=rdiff  cosφ; where θ is uniformly distributed between 0 
and 2π and cos φ is uniformly distributed between -1 and 1. For every time step we pick a 
value for θ and φ. θ is a random number between 0 and 2π. For generating φ, we pick a 
random number between -1 and 1 and take inverse cosine of that (Bijeljic 2007). 

If during any time step the particle hits the bond wall, it is reflected back into the bond.  
The algorithm for tracking particles movement through a capillary tube is 

validated by comparing simulations in a cylindrical tube with results with Taylor’s theory 
and experiments (Jha 2008). A close agreement of simulated results with Taylor’s theory 
validates the algorithm. 
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Algorithm for Particle Tracking through the Network.  (1) Starting positions 
of a swarm of 15000 particles at the inlet face of the network are decided in advance. 
Particles are distributed to the inlet bonds in proportion to their flow rates. In an inlet 
bond, particles are distributed uniformly over its inlet face. 

(2) We track one particle at a time. A particle moves with convective and 
diffusive steps through a bond till it reaches a pore body (bond junction). Its position is 
mapped to an out-flowing bond based on the deterministic rules discussed above and 
described in the Appendix.  

We used same rules for particle tracking for all the Peclet numbers. The position 
of a particle at the entrance of on outlet bond depends only the flow configuration and 
relative flow rates at a pore center. This rule is strictly valid when solute transport is 
dominated by convection. A better rule to decide the out-flowing bond in diffusion 
dominated regime (NPe<4) should be based on cross sectional areas of bonds rather than 
their flow rates. However, the focus of the rules is to capture the convective transport 
from one bond to the next and thereby account for the contribution of convective 
spreading. 

(3) The particle continues its movement through successive bonds till it reaches 
the outlet of the network. Particle positions are scanned at regular time intervals. We also 
record the residence time of the solute particle. Dispersion coefficient is calculated from 
spatial as well as temporal statistics. 

 
Results 

We use the model described above to focus on the three physical features of pore-
level flow and solute transport.  The first is stream splitting of solute front at every pore 
which causes a sequence of independent and random velocities of solute particles in 
successive bonds. The second is variation of velocity within a bond, the consequence of 
momentum transfer with no-slip boundary conditions. The third is diffusion, the 
consequence of random movement of solute particles. We examine these phenomena 
individually and in combinations. Only when all three are accounted for do we obtain 
predictions consistent with the experimental observations.  

 
Convective Spreading as a Diffusive Process.  We first apply the algorithm to 

investigate purely convective spreading. The network flow calculation yields volumetric 
flow rates through each bond. We impose a plug-flow velocity profile in each bond, i.e, 
all particles in a bond move at the same velocity. The direction of movement is parallel to 
the bond axis, and the speed is 2/ effrqv π= . Diffusion is neglected. Thus only one of the 
physical features of interest affects this set of simulations.  

Figure 6a shows paths of five different pairs of particles. The particles in each 
pair were initially close to each other.  The rules determining the exit bond taken by a 
particle entering a pore constitute a mapping. The mapping is unique for each pore in the 
network.  At the higher level, the mapping relates geometric regions: well-defined 
segments of the exit faces of in-flowing bonds are connected to well-defined segments on 
inlet faces of out-flowing bonds. At the lower level the mapping connects a single point 
within a geometric region on an exit face to a point within a corresponding region on an 
inlet face. Thus if a pair of particles reach an exit face and are in the same geometric 
region, they will enter the same out-flowing bond together (details in the appendix). As 
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the pair of particles proceeds through the network, eventually they will arrive at an exit 
face on opposite sides of a line separating two geometric regions on that face.  

When the particles fall on opposite sides of the split stream on an exit face, they 
take different paths and their movements become independent of each other. They are 
unlikely to come together again, and their positions become uncorrelated. This is true 
even in the absence of diffusion. It is simply a consequence of the asymmetric splitting 
and rejoining of flow paths around randomly arranged obstacles, that is, the grains 
comprising the porous medium. This is a manifestation of convective spreading. It is 
useful to contrast the situation in ordered arrangements of grains. There the 
splitting/rejoining is symmetric, and positions of a pair of particles remain correlated 
regardless of their initial separation (Jha 2008). If plug flow occurs in bonds and there is 
no diffusion, then no independence of particle paths occurs because of convective 
spreading in an ordered packing. 

Figure 6b shows paths of several solute particles (moving without diffusion with 
plug flow in bonds) starting at the same inlet pore. A particle’s displacement becomes 
independent of other particles very quickly because of frequent splitting of flow passages. 
The randomness of convective spreading in porous medium is inherent in the morphology 
of the pore space (Sahimi et al. 1986). 

In the conventional Fickian representation of dispersion, convective spreading is 
considered to be “diffusion like”, that is, a statistically random process. The sufficient 
conditions that convective spreading because of splitting at pore junctions can be treated 
like diffusion in a continuum transport equation can be stated in terms of the central limit 
theorem (Chandrashekhar 1943, Sahimi et al. 1986).  The central limit theorem states that 
the sum of a large number of independent and identically distributed random variables 
will be approximately normally distributed (Bear 1972). After a particle has traveled a 
distance greater than the correlation length in velocity, its total displacement can be 
considered as the sum of independent and random convective steps. Consequently after a 
few steps the spatial distribution of solute particles’ displacements is expected to be 
normal (Gaussian) as per the central limit theorem and convective spreading can be 
considered like a diffusive process. Cenedese and Viotti (1996) and Moroni and 
Cushman (2001) show by three-dimensional particle tracking velocimetry experiments in 
bead packs that velocity components quickly become independent. Correlation lengths 
are of the same order as the grain dimensions. Longitudinal dispersion coefficient 
becomes Fickian after solute front has traversed five to six pore diameters (Manz et al. 
1999). Though the experiments are not diffusion-free, the agreement with our simple 
model is encouraging.  

 
Particle Tracking without Diffusion.   

With Plug Flow in Network Bonds.  Having seen the role of convective 
spreading with small groups of particles, we now track movement of a swarm of 15,000 
particles through the same physically representative network model. Again we impose a 
plug-flow velocity profile in each bond of the network and neglect diffusion. The 
particles move from bottom to top of the domain (positive z direction). The average 
interstitial velocity is 5.12 × 10-5 m/s which roughly corresponds to about 0.12 grain 
diameters per second.  

The particle positions are scanned at several time intervals. A probability 
distribution plot of particles’ spatial positions is shown at several different times in Figs. 
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7a-c. For comparison, a normally distributed probability distribution plot having the same 
mean and standard deviation as the actual data is also plotted in each case.  

The dispersion coefficient at each time is calculated from spatial statistics using 
where 2 / 2L zD tσ= 2

zσ  is the variance of solute particle positions in the z (longitudinal) 
direction at time t. For verification we also compute the dispersion coefficient using the 
particles’ residence time statistics and using a solution to the one dimensional convection 
diffusion equation (Lake 1989). The dispersion coefficient calculated from spatial 
statistics increases with time (and travel distance) and approaches an asymptotic value 
(Fig. 7d). The asymptotic dispersion coefficient is very close to that obtained from 
temporal statistics in all the cases studied. For consistency, the dispersion coefficient 
obtained from temporal statistics is taken as the dispersion coefficient. 

It can be seen from Figs. 7a-c that particles are normally distributed at all the 
times. The particle velocities become independent quickly because of splitting of solute 
stream at each pore and randomness of pore structure. Solute particles get normally 
distributed as expected from the central limit theorem. The convergence of the dispersion 
coefficient to an asymptotic value is governed by correlation in the local pore structure. 
After the asymptotic value of dispersion coefficient has been obtained, purely mechanical 
dispersion is Fickian. The asymptotic dispersion coefficient for purely mechanical 
dispersion is evaluated to be 9.25×10-9 m2/s.  

 
With Parabolic Velocity Profile in Bonds.  Using the same steady state solution 

for flow in the network as in the preceding section, we impose a parabolic velocity profile 
in each bond of the network. As in the preceding section, we neglect diffusion. Thus two 
of the physical features of interest (stream splitting and velocity variation) affect this set 
of simulations. The velocity profile is taken from the classical Hagen-Poiseuille analysis 
of flow in a cylindrical bond of radius reff: 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

2

12)(
effr
rvrv  

where r measures the radial distance of the particle from the bond axis. 
Figure 8 shows the particle statistics for a swarm of 15,000 particles moving 

through the network. For early time there are two peaks in the probability distribution 
function. The peak at smaller displacement corresponds to solute particles initially 
located in the slower zone near the wall of the bonds, i.e. at r ≈ reff. At longer distances 
traveled, a second peak emerges in the distribution. It corresponds to particles initially 
located in the faster moving core of a bond, i.e. at 0 < r < areff where a ≈ 0.9. These 
particles are free to move at early times and have traveled a sufficiently large distance to 
experience a wide range of flow velocities (Lebon et al. 1997). At longer times, the 
second peak is closer to normal distribution. However, the first peak persists at the 
longest time observed.  

It may be argued that the dispersion coefficient is converging to an asymptotic 
value (Fig. 8d). However, the concentration profiles make it clear that the transport 
process is not Fickian. This behavior is general. If a stochastic velocity field contains 
regions of zero velocity, there is no purely hydrodynamic mechanism by which solute 
particles in these regions can reach rest of pore space. Particles in these regions cannot 
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have any random velocity from the velocity distribution.  Therefore, central limit theorem 
is not applicable and the dispersion coefficient is not well defined in this case. Effect of 
diffusion must be considered for the transport process to become Fickian even in the limit 
of high Peclet number (Koch and Brady 1985, Duplay and Sen 2004).  

Steady-state single-phase flow in the network is a linear process. If the overall 
pressure drop across the network is changed, the pressure difference between the 
extremities of each bond of the network changes in proportion. It follows that the 
velocities, flow rates and transit times in each bond also change in proportion. Hence the 
ratio between flow rates in different bonds that connect to the same node remain 
unchanged and therefore the mapping rule at the pore junction remains unchanged if 
average velocity changes. Consequently the dispersion coefficients are proportional to the 
mean velocity. Therefore, in absence of diffusion (or negligible diffusion), the 
mechanical dispersion depends linearly on velocity (Sahimi et al. 1986). 

 
Particle Tracking with Diffusion.   

With Plug Flow in Network Bonds.  Next we study influence of diffusion on 
particle statistics and dispersion coefficient. A plug-flow velocity profile is imposed in 
the bonds of the network. Thus two of the three physical features of interest (stream 
splitting and diffusion) affect the solute transport.  

Particles move with convective and diffusive steps as described previously. The 
time step should be small enough to prevent diffusive jumps from being larger than the 
bond diameter (Bruderer and Bernabe 2001). In the simulations reported here the time 
step was taken to be one tenth of this value (evaluated for the average bond diameter) to 
reduce numerical error. 

Figure 9 shows effect of diffusion on solute particle statistics. It is evident that 
diffusion has negligible impact on particle distribution for diffusion coefficients ranging 
from 0 to 10-9 m2/s because diffusion is very small in magnitude as compared to 
mechanical dispersion. The dispersion coefficient remains constant in this range of 
diffusion coefficients. For higher diffusion coefficients, diffusion becomes significant in 
magnitude as compared to mechanical dispersion and therefore, variance of particle 
displacements increases and this increases the dispersion coefficient.  

When diffusion is very small, transport is dominated by convection. However, at 
very low Peclet numbers when diffusion is large, our flow-rate-weighted rule for 
deciding an out-flowing bond captures only part of the particle dynamics at a pore center. 
Therefore, in this case the particle statistics deviate from normal distribution at longer 
times.  

Figure 10 shows the a priori prediction of dimensionless dispersion coefficient vs. 
pore scale Peclet number for this case. The agreement with the experimental data from 
the literature is good for small and moderate Peclet number, but it is clear that the scaling 
is incorrect for large Peclet numbers. The experimental data suggests a power law 
relationship between dispersion coefficient and Peclet number with the power law 
coefficient β in the range of 1.1 to 1.3. The simulations yield β = 1. 

The cause of the incorrect scaling is the plug-flow velocity profile in the bonds. 
Under this assumption there is no stretching of a solute front as it moves along a bond. 
Therefore, flow velocity within a bond has no interaction with diffusion: a particle 
making a diffusive jump to another streamline within a bond still travels at the same 
velocity after the jump. Thus diffusion acts independently of mechanical dispersion 

 
32



Topic 2: Grain-scale origin of dispersion 

(convective spreading), and the dispersion coefficient is just the sum of pure mechanical 
dispersion and diffusion. Consequently for small diffusion (large Peclet number), we get 
a linear dependence of dimensionless dispersion coefficient on pore scale Peclet number. 
The longitudinal dispersion coefficient for the full range of Peclet number can be 
expressed as: 
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The first term in the above equation represent the contribution of diffusion and the 
second term is the result of convection. 

 
With Parabolic Velocity Profile in Bonds.  Finally we examine the influence on 

dispersion of all three physical features (stream splitting, velocity variation and diffusion) 
simultaneously. We repeated the simulations of the previous section but with a parabolic 
velocity profile in each network bond as described above.  

If a bond has a velocity gradient within it, then the interaction between convection 
and diffusion is no longer trivial. Now a solute front stretches as it travels along a bond, 
and diffusion becomes a much more effective mixing mechanism. (This interaction is the 
basis of the familiar Taylor’s dispersion (Taylor, 1953).) Because velocity now 
influences dispersion within a bond, the dispersion coefficient will not simply be the 
summation of mechanical dispersion and diffusion. 

Figure 11 shows a comparison of dimensionless dispersion coefficient obtained 
from simulations with the experimental data. The match is excellent for the whole range 
of Peclet numbers. From curve fitting we get a power law coefficient of 1.23. This a 
priori quantitative prediction of dispersion coefficient and its scaling behavior indicates 
that the essential physics of dispersion through pore space has been captured. 

We investigate the interaction of convection and dispersion more closely. Figure 
12 shows effect of diffusion on particle statistics for physically representative network 
with parabolic velocity profile in bonds. Even a vanishingly small amount of diffusion of 
10-13 m2/s starts moving solute particles from low velocity regions near the wall to high 
velocity regions. After moving out of this zone, solute particles can sample all the regions 
of pore space because of stream splitting. The first peak at small displacement 
corresponding to particles in the slow moving region near walls starts decreasing and 
almost disappears by 150 seconds. We get a normal distribution of solute particle 
positions. 

This is consistent with experimental observations by Lebon et al. (1997). They 
studied dispersion at short times using a PFG-NMR technique. At short times, the 
displacement of the molecules is small enough that the local displacement is proportional 
to the local velocity component along the magnetic field gradient. At mean displacements 
larger than 5 bead diameters, the displacement distribution was found to be Gaussian. At 
intermediate displacements, the measured distribution displayed two peaks.  With 
increasing diffusion coefficient the peak at small displacements disappears quickly (Jha 
2008). 

Figure 13 shows effect of increasing diffusion on dispersion. For zero diffusion 
there is a wide range of particle positions because of velocity gradient in the bonds. As 
diffusion is increased solute particles move in the radial direction in the bonds and effect 
of velocity gradient in bonds is reduced. This reduces the spread in solute particle 
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positions and therefore dispersion coefficient is reduced. This trend continues with 
increasing diffusion and reverses when magnitude of diffusion coefficient becomes large 
as compared to the mechanical dispersion. The dispersion coefficient vs. diffusion 
coefficient plot goes through a minimum. 

 
Discussion 

The rules for determining the exit bond taken by a particle entering a pore enable 
us to isolate the contribution of convective spreading to core-scale dispersion. Convective 
spreading, also known as mechanical dispersion, occurs simply by virtue of a stochastic 
velocity field in a granular porous medium. Different bonds carry different flow rates, 
and there is no long-range correlation of these flow rates. Thus particle positions 
eventually become uncorrelated as flow continues, even in the absence of diffusion. 
Consequently dispersion only because of convective spreading grows like NPe. However, 
the purely mechanical analysis is not valid in the region of zero velocity. More 
importantly, in the absence of diffusion, either the scaling behavior of dispersion 
coefficient with Peclet number, NPe is incorrect (in the limit of plug flow in bonds), or the 
solute transport is non-Fickian (when bonds have parabolic velocity profiles). These 
problems are despite having a physically representative flow field at the pore scale. Thus 
diffusion is essential for explaining core-scale dispersion. 

The region of zero velocity near the grains of the porous medium gives rise to 
non-mechanical dispersion mechanisms. Non-mechanical dispersion arises when a solute 
molecule cannot sample all points within the pore space by convection alone. Solute 
particles in the boundary layer near the solid surfaces are not free to move. Diffusion is 
required to enable these solute particles to escape the boundary layer. Subsequently a 
solute particle can encounter a wide range of velocities because of stream splitting. This 
sampling gives rise to the Fickian behavior of dispersion (Koch and Brady 1985, Duplay 
and Sen 2004).  Therefore, diffusion even though small in magnitude, is essential for 
Fickian behavior of dispersion.  

A plug flow velocity profile does not have regions of zero velocity. Therefore, 
non-mechanical dispersion does not occur, and dispersion scales linearly with NPe (β = 1). 
However, in case of parabolic velocity profile in network bonds there are regions of no-
flow velocity near pore-walls. Therefore, we get a non-mechanical dispersion which 
becomes important at high Peclet numbers and results in a mild non-linear dependence of 
dispersion coefficient on Peclet number (β = 1.2).  

Taylor (1953) showed that in a single capillary tube, the interaction of diffusion 
and the parabolic velocity profile yields a much stronger dependence, of dispersion 
coefficient on Peclet number (β = 2). Our model invokes tubes, albeit of short length, in 
which a parabolic velocity profile exists. Why then does transport in the physically 
representative network – and in experiments – exhibit a much smaller value of β than 
Taylor’s analysis? The reason is the asymmetric splitting and rejoining of flow paths 
around grains in the porous medium. Individual bonds are much shorter than the length 
required for Taylor’s asymptotic solution to apply, and the splitting/rejoining process in a 
disordered medium causes convective spreading to dominate the dispersive behavior at 
large values of Peclet number.  
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Summary and Conclusions 
We construct a pore-level model of single-phase solute transport that has three 

key features: (i) splitting of solute swarms at every pore body (ii) velocity gradient within 
pore throats and (iii) diffusion. Particle tracking produces the positions at every time from 
which statistics and subsequently dispersion can be inferred. The flow field is obtained 
from physically representative network model of a model sediment, a dense random 
packing of equal spheres. We introduce mechanistic (non-stochastic) rules to determine 
the bond through which a particle exits a pore. The rules are essentially geometric and 
depend on the network flow field (rates in individual bonds and the local configuration of 
inlet and outlet bonds at each pore body). They enable us to attribute the contribution of 
convective spreading to core-scale dispersion without requiring a detailed (sub-pore) 
solution of the flow field through the porous medium.  

The simulations provide a priori (no adjustable parameters) predictions of 
dispersion coefficient as a function of pore scale Peclet number. The predicted trends 
match quantitatively the experimental data found in the literature for a wide range of 
Peclet numbers, including the well known empirical observation that the scaling exponent 
has a value of about 1.2. The agreement indicates that the key features of our model 
correspond to the key physical phenomena causing dispersion in porous media. 

The model permits rigorous attribution of the contribution of the phenomena 
individually, and of the interaction between combinations of phenomena.  Fickian 
behavior of solute transport is asymptotically observed when solute particles’ 
displacements are independent, identically distributed and random. In the limiting case of 
a plug-flow velocity profile in network bonds, Fickian behavior can occur without 
diffusion. However, this is entirely reversible. Convective spreading and diffusion act 
independently of each other and dispersion coefficient is the sum of the two. In the more 
realistic case of parabolic velocity profile in bonds, purely convective (i.e. no diffusion) 
spreading is not asymptotically Fickian. Diffusion is required to move solute particles 
from low velocity regions near pore walls. Subsequently, stream splitting is responsible 
for independent, random movement of solute particles and causing Fickian behavior.  

In the absence of diffusion, convective spreading in porous media results in a 
linear dependence of DL on NPe. Interaction between convective spreading and diffusion 
results in a weak non-linear dependence of DL on NPe, in agreement with the experimental 
observations.  

 
Nomenclature 

β: Power law coefficient characterizing dependence of dispersion coefficient on Peclet number.  
DL: Longitudinal dispersion coefficient, m2/s. 
Dp: Particle diameter, m.
Do: Molecular diffusion coefficient, m2/s.
F: Formation resistivity factor. 
g: Hydraulic conductivity of a bond, m3/s/Pa.
l: Length of a bond connecting two neighbors, m. 
µ: Fluid viscosity, Pa-s. 
φ : Porosity. 
NPe: Pore scale Peclet number, NPe=vDp/Do. 
q: Flow rate through a bond, m3/s. 
rdiff : Magnitude of diffusive jump, m. 
reff : Effective radius of a bond, m.  
rc : Radius of the largest circle to fit in a pore throat, m. 
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re : Radius of a circle having same area as a pore throat, m.  
2
zσ : Variance of solute particles in z-direction, m2. 

v: Interstitial fluid velocity, m/s. 
v : Average fluid velocity through a bond, m/s. 
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Topic 3a: Flow reversal tracer tests  
SUMMARY 

Dispersivity data compiled over many lengths show that values at typical 
interwell distances are about two to four factors of ten larger than those measured on 
cores. Such large dispersivities may represent significant mixing in the reservoir or they 
may be a result of convective spreading driven by permeability heterogeneity. The work 
in this paper uses the idea of flow reversal to resolve the ambiguity between convective 
spreading and mixing. We simulate flow reversal tests for tracer transport in several 
permeability realizations using particle tracking simulations (free from numerical 
dispersion) on three-dimensional, high resolution models at the field scale. 

We show that convective spreading, even without local mixing, can result in 
dispersion-like mixing zone growth with large dispersivities because of permeability 
heterogeneity. But for such cases, the dispersivity estimated on flow reversal is zero. 
With local mixing (diffusion or core scale dispersion) the dispersivity value on flow 
reversal is non-zero and also much larger than typical core values. Layering in 
permeability, while increasing the convective contribution to transport, also enhances 
mixing by providing larger area in the transverse direction for diffusion to act. This 
suggests that in-situ mixing is an important phenomenon affecting the transport of solutes 
in permeable media even at large scales. Dispersivity values increase with scale mainly 
because of the increase in the correlation in the permeability field but they could also 
apparently appear to do so because the Fickian model fails to capture the mixing zone 
growth correctly at early times.  

The results and approach shown here could be used to differentiate between 
displacement and sweep efficiency in field scale displacements, to ensure accurate 
representation of dispersive mixing in reservoir simulation and to guide upscaling 
workflows. The flow reversal concept motivates a new line of inquiry for lab and field 
scale experiments.  

 
1. Introduction 

Dispersion is the in-situ mixing of chemical components as they are transported 
through porous media. It results from the combined effects of molecular diffusion and 
fluid velocity gradients (Taylor, 1953). The recovery efficiency of processes like miscible 
gas or chemical flooding depends partly on the mixing which an injected slug undergoes. 
For example, Solano et al. (2001), performing a range of one dimensional and two 
dimensional simulations of enriched gas floods, show that the recovery difference 
between the cases studied could be up to 8% of the original oil in place depending on the 
degree of dispersion. Similar observations have been made by others (Haajizadeh et al., 
1998; Jessen et al., 2002; Moulds et al., 2005). Dispersion is also an important effect in 
water injection where mineral scales are formed by mixing of injected and reservoir 
brines (Sorbie and MacKay, 2000; Delshad and Pope, 2003), in the underground storage 
of gases where mixing of the injected and in-situ gas changes the quality of the stored gas 
(Verlaan, 1998), and in proposed methods of enhanced natural gas recovery by injecting 
anthropogenic CO2 (Oldenburg et al., 2001).  

Modeling any of the above processes requires an accurate estimation of the degree 
of mixing and its impact, relative to other transport mechanisms, at the length scale under 
consideration (core, grid block size or interwell distance). This is straightforward for a 

 
44



Topic 3a: Flow reversal and tracers 

homogeneous system e.g. a single bounded flow unit where the results from the core 
scale are easily translated to the field scale. In heterogeneous media, despite considerable 
work done over the years, significant ambiguity exists in addressing this problem. 
Dispersivities measured using interwell tests show values at the field scale that are two to 
four factors of ten larger than those at the core scale. But these values were obtained by 
treating the flow unit as one homogeneous. One dimensional analytical models were used 
to match the effluent concentrations because the permeability description was unknown 
or because computational considerations necessitated an upscaled description. So, such 
large dispersivity values could be a result of convective spreading because of 
permeability heterogeneity (which causes widely varying arrival times of injected 
chemical at the well, followed by mixing within the well). Alternatively, they could be 
the consequence of significant mixing or dilution in the reservoir (driven by diffusion). 

In this paper, we present concepts and results that address fundamental aspects of 
this issue. Using high resolution simulations of tracer transport in three-dimensional 
heterogeneous permeable media, we 

• Demonstrate the application of flow reversal to distinguish between spreading and 
mixing. The concept is described in Section 2.3. In Section 4.2 we show that, in 
certain cases, permeability variations alone can cause dispersion-like behavior 
(even in absence of diffusion). But with a flow reversal test, the dispersivities 
estimated in such cases are zero indicating no mixing. 

• Show the influence of permeability heterogeneity (variance and auto correlation 
lengths), permeability anisotropy, core scale dispersivity and residence time on in-
situ mixing (Section 4.3-4.7). We compare the dispersivities estimated from our 
simulations to those measured from field tests (Section 4.8). We argue that a large 
value of dispersivity is not always the result of averaging unknown permeability 
heterogeneity as commonly understood. There could be a significant amount of 
mixing occurring in the reservoir. 

• Show that the dispersivity estimated using the traditional (forward flow) approach 
is not much affected by changes in degree of diffusion or core scale dispersion. 
But this does not imply that the effects of diffusion are negligible. In such cases, 
the dispersivity value obtained on flow reversal are always non-zero and also 
much larger than typical core scale values (Section 4.4). We argue that this is the 
effect of transverse mixing across streamlines which has been neglected in 
previous works. 

• Show that dispersivity values increase with increase in the correlation lengths of 
the permeability field (Section 4.7 and 4.8). This also increases the amount of 
mixing as indicated by the dispersivities estimated from flow reversal tests. 

• Show that dispersivity values can also appear to increase with scale because of the 
inadequacy of the Fickian dispersion model in capturing the early time behavior 
of the injected solute (Section 4.7 and 4.8) 
We consider tracer transport in a porous medium with uniform porosity and 

spatially varying permeability under single phase, incompressible flow at constant 
density. The tracer is assumed to be volumeless and without adsorption. The transport 
calculations are free from numerical dispersion. Section 2 expands on the problem 
description and provides the basis of our approach. The computational scheme used is 
described in Section 3. Section 4, shows the evolution of longitudinal dispersivities for 
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various cases. In Section 5, the implications of our results are discussed and compared 
with existing works. 

 
2. Concepts and Definitions 

2.1 Diffusion and Dispersion.  Diffusion is the spontaneous net movement of 
particles driven by a concentration gradient. The mechanism of diffusion is Brownian 
motion and is described by Fick's law:  

 
2

2mol
c cD
t x

∂ ∂
=

∂ ∂
 (1) 

Here c is the local (point scale) concentration of the injected chemical and Dmol its 
diffusion coefficient. Diffusion increases entropy, decreases Gibbs free energy and is the 
fundamental mechanism responsible for mixing. By mixing we mean dilution or 
reduction in local concentrations. Convection (or spreading) is the movement of particles 
by the motion of the carrier fluid. This is sometimes termed advection. Spreading implies 
redistribution of local concentrations. Both mixing and spreading involve the distribution 
of solute in a solvent but in mixing the volume occupied by the solute increases whereas 
in spreading the volume occupied by the solute remains the same. 

G.I. Taylor (1953) analyzed the mixing of a solute introduced into a solvent 
slowly flowing in a circular capillary tube. He showed that when certain conditions are 
met, a quasi-equilibrium is established where convection and diffusion interact in a 
manner with the net effect appearing as if the solute were in plug flow despite the radial 
variations in velocity. The radial concentration variations are almost zero making the 
local and averaged concentrations the same. This phenomenon could be characterized as 
an unsteady diffusion process governed by the same equation (Eq. 1) but with an 
effective diffusion coefficient whose value depends on the flow profile and is much 
larger than Dmol. This is phenomena is termed dispersion. It must be noted that in the 
absence of diffusion, such a condition would never be reached. In this paper, we use the 
term dispersion to imply enhanced diffusion or mixing. The same idea applies to 
transport in porous media (Aronofsky and Heller, 1957) with the dispersion coefficient 
for an isotropic medium now being a tensor: 

 ( ) l t
t molD V D I V

V
Vα αα −

= + +  (2) 

where D is the dispersion coefficient of the porous medium, I is an identity matrix 
and V is the average fluid velocity vector. The value of Dmol is adjusted for the porous 
medium. αl and αt are the longitudinal and transverse dispersivities which are assumed to 
be fundamental constants for the medium (Bear, 1961). In experiments done on 
homogeneous sand columns it was found that αl is of the order of magnitude of the 
average grain size and αt is about ten to thirty times smaller than αl (Perkins and 
Johnston, 1963). The longitudinal dispersivities of consolidated media are about a 
centimeter (Arya, 1988).  

Dispersion entails averaging. In using Eq. 1 for dispersion, we have tacitly 
invoked the continuum hypothesis. Local scale now implies the scale of the 
representative elementary volume (Bear and Verruijt, 1987). At the continuum scale, the 
dispersive flux captures the combined effect of diffusion and velocity variations. The 
dispersion coefficient is governed by averaged velocities and it describes averaged 
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concentrations. Its magnitude of the dispersion coefficient is largely governed by the 
velocity variations. Without them, the coefficient of dispersion would be the same as that 
of molecular diffusion (adjusted for the geometry of the porous medium). But without 
diffusion, there would be no dissipation occurring at the local scale and the dispersive 
flux would simply be representing the convective spreading caused by local velocity 
variations. 

So, following Lake (1989), the transport equation for a chemical component in a 
homogeneous one-dimensional porous medium, expressed in dimensionless terms, is 
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where the CD is the concentration (limited between 0 and 1) at any point 
normalized to the injection concentration. The chemical is injected uniformly over the 
entire inlet face. The dimensionless time (pore volumes injected) is  

 D
qt Vtt

AL Lφ
= =  (4) 

Dimensionless distance (limited between 0 and 1) is 

 D
xx
L

=  (5) 

The dimensionless measure of the degree of convective to dispersive transport is 
the Peclet number: 

 Pe
l

VLN
D

=  (6) 

where Dl is the longitudinal dispersion coefficient. A high Peclet number (>500) 
yields a sharp displacement front and a low number (<100), a more spread out one. 
Defining the dimensionless mixing zone length as  

 ( )0.9 0.1 /
D DD C Cx x x= =∆ = − L  (7) 

the analytical solution to Eq. 3 (to its first order approximation) can be 
manipulated to give 

 3.625 D
D

Pe

tx
N

∆ =  (8) 

which, using Equations 6 and 2 , can also be expressed as  

 3.625 l
D Dx t

L
α⎛ ⎞∆ = ⎜ ⎟

⎝ ⎠
 (9) 

Hence an experiment where the mixing zone grows with square root of time can 
be matched using the Fickian model for dispersion. In a discrete sense, considering the 
solute to be an ensemble of particles, the mixing zone represents the standard deviation of 
the particle x-locations. So another way of restating the above is that an experiment 
where the particle x-variance grows linearly with time can be matched with the Fickian 
model for dispersion.  

 
2.2 Dispersion and Reservoir Heterogeneity.  Consider a miscible displacement 

in a homogeneous flow unit of length 100 m. If the dispersivity were say 1 cm (core 
measured value), the Peclet number would be 10,000. This would result in a 
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dimensionless mixing zone of 0.03625 at one pore volume injected (Eq. 8), an 
insignificant fraction of the length. For a heterogeneous medium of the same length, 
composed of many such rock types, the key question is what value of dispersivity should 
be used to estimate the mixing zone size if Eq. 3 were to be used. Dispersivities are 
inferred for such cases in the field using interwell tracer tests (see for example 
Chrysikopoulos et al., 1990). Data compiled from results of such tests published over the 
past few decades (Schulze-Makutch, 2005) are shown in Fig. 1. This data set represents 
many formation types and length scales. Despite the scatter, dispersivities appear to 
increase with system length. At 100 m, the range of dispersivities is 5-50 m. This means 
that the smallest possible dimensionless mixing zone size at one pore volume would be 
0.81 which is quite large. But does this mean that there is significant mixing taking 
place?  

Probably not, because the displacements during the tests are unlikely to be 
entirely in the dispersive mixing regime. The use of Eq. 3 to interpret them is probably 
incorrect because this counts the contribution of convective spreading (because of 
permeability variations) as a dispersive mixing effect. But it must be noted that some of 
the measurements used point samples from sources injecting at small flow rates (Arya et 
al., 1988). Also, velocities in typical field displacements are about 1 ft/D (about 3×10−4 
cm/s). At this rate the effects of molecular diffusion, acting over the long travel times 
between wells, could compound and lead to significant reduction in local concentrations. 
Layering increases the convective contribution to transport but, by increasing the area 
available in the transverse direction, also increase the dilution of the solute (Lake and 
Hirasaki, 1981).  

So, the question of how much mixing takes place in a heterogeneous medium at 
the field scale has no clear answer. If all the heterogeneity could be represented explicitly 
and local mixing be modeled only by diffusion or core scale dispersion, then the question 
would be irrelevant. But even if the computational resources were available for such an 
undertaking, one must consider the cost of collecting and assimilating data at such a fine 
scale. As long as upscaled descriptions are in use, one must address this issue. Our work 
is set in this context. 

 
2.2 Convection, Dispersion and Flow Reversal.  We use the idea of flow 

reversal to distinguish between mixing and spreading. For an incompressible fluid, in the 
absence of temperature effects (which cause changes in local fluid viscosity) and 
turbulence effects (which cause temporal variations in the local flow field), the local 
velocities reverse themselves on reversing the boundary conditions (Flekkoy, 1997). With 
no diffusion, the concentration history observed on flow reversal at the inlet would be 
same as the original input. For this case, particles return back on the same streamline. 
Convective reversibility has been well illustrated in unmixing demonstrations for circular 
Couette flow (Heller, 1960; Taylor, 1972), for slow, laminar flows between disordered 
arrays of cylinders (Hiby, 1960, Flekkoy et al., 1996) and for neutrally buoyant particles 
in dilute suspensions (Cox and Mason, 1971). 

We assume convective reversibility at low Reynolds number flows in porous 
media. Numerical simulations have validated this assumption (Jha et al., 2006) but it has 
not been experimentally demonstrated. If mixing occurs, then particles jump across 
streamlines and the concentration history on flow reversal is dispersed. Any initial solute 
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distribution, once mixed, cannot be reconstructed by reversing the direction of the flow. 
Referring to Fig. 2, the traditional approach of estimating the dispersivity of a medium is 
using a slug or a step change in concentration (as shown) with a constant flow direction. 
This is termed a transmission experiment and can be interpreted using Eq. 3. All the 
values in Fig. 1 are transmission dispersivities. One could perform the same experiment 
but reverse the flow direction before the injected solute reached the forward outlet. This 
is termed an echo test. The effluent is recovered at the inlet face. Assuming no 
experimental artifacts, if mixing was not occurring then the effluent concentration history 
would also be a step change (same injection). If mixing were occurring, then on flow 
reversal the fluids would continue mixing (not unmix) and a variation in concentrations 
would be seen in the effluent history. In this paper, we use Eq. 3 to also estimate echo 
dispersivities. A zero echo dispersivity (or dispersion coefficient) would imply no mixing 
and only convection. An echo dispersivity value equal to the transmission value would 
imply well mixed transport (effective diffusion). 

Hulin and Plona (1989) and Rigord et al. (1990) studied the reversibility of tracer 
dispersion in careful experiments on bead packs and sandstones. They observe that 
homogeneous porous materials do not exhbit convective reversibility: the echo dispersion 
(after flow reversal) is the same as transmission dispersion over a wide range of Peclet 
numbers. In heterogeneous materials, they observe echo dispersion to be less than 
transmission, implying that the equilibrium condition to ensure the use of Eq. 3 was not 
met. They argue that a small amount of diffusion is sufficient to cause irreversibility. 
Heller (1972) also points out the influence of diffusion on mixing and reversibility. 
Mahadevan et al. (2003), estimating echo dispersivities from single well tracer test data, 
observed values in the range of 0.1-1 m at a length scales in the range of 10-50 m. These 
are much larger than the range of core scale values (Fig. 3). This suggests that mixing 
could be significant even at the field scale. There is some uncertainty in the use of the 
tracer data because of fluid drift and transient flow effects during the test. Also, the 
corresponding transmission values for their cases are not available for comparison. In this 
work, we use numerical simulations to investigate the significance of dispersive mixing 
at the field scale and test their observations over a range of reservoir descriptions.  
 
3. Computational Approach 

3.1 Overview.  We simulate transmission and echo tests for tracer injection in 
field scale heterogeneous media. The degree of local mixing is varied from zero (purely 
convective) to core scale dispersion (well mixed). The dispersivities inferred from the 
simulations are compared with core scale dispersivities (input values) and the field data 
(Fig. 1) to make our conclusions. 

A three-dimensional Cartesian grid is used. The grid spacing is uniform and grid 
cells are equidimensional. We controlled the system size and aspect ratio by changing the 
number of cells in each direction. Primary input variables are the medium dimensions, 
the permeability field, the flow boundary conditions and the degree of local (now 
meaning at the scale of a grid cell) mixing (diffusion and/or core scale dispersion). The 
permeability field is characterized by a correlation structure (having a short range and 
long range component), variance and anisotropy. We assume that sub-cell permeability 
variations are negligible and local dispersion, when introduced, implies mixing. For each 
case, we generate the permeability field, compute the flow field and then use the flow 
velocities in the transport calculations. A Lagrangian particle tracking scheme is used to 
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model the transport of tracer through the computed flow field. The details of each 
individual step are described in the following sections. 

Our computing environment was a Linux cluster at the Texas Advanced 
Computing Center at the University of Texas. Each compute node is a Dell Power Edge 
1955 blade containing two Xeon Intel Duo-Core 64-bit processors running at 2.66GHz 
and 8 GB of memory. The peak performance is rated at about 10 GFLOPS/processor 
core.  

 
3.2 Permeability field generation.  The correlation structure is modeled with a 

sum of short and long-range structures 
 ( ) ( ) ( ), ,short short long longh s h r s h rγ γ γ= +  (10) 
where γ is the semi variance of the permeability at distance h (a vector), s is the 

variance or sill parameter and r is the range parameter (a vector). Each structure is 
described by an exponential semivariogram, 

 ( ), 1 exp hh r s
r

γ
⎡ ⎤⎛ ⎞

= − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (11) 

We used this model because measurements on outcrops typically show multiple 
scales of variability (Tidwell and Wilson, 2000; Willis and White, 2000; Jennings et al., 
2000). A stochastic simulation technique based on spectral transforms is used to generate 
permeability field realizations. The input correlation structure is converted into a 
covariance function, which is sampled on the grid used for the flow calculations. The fast 
Fourier transform (FFT) algorithm is used to produce the amplitude spectrum of the 
permeability covariance function. This is multiplied by the FFT of an uncorrelated 
Gaussian noise and inverted to produce a realization which has a standard normal 
distribution. This data is transformed to a lognormal distribution of the desired mean and 
variance. The z-direction permeabilities are multiplied by the desired anisotropy ratio. All 
the points in the permeability realization thus produced are globally conditioned. The 
method is fast even for large number of grid points simulated. This approach is detailed 
in Appendix C of Jennings et al. (2000). 

 
3.3 Flow field generation.  The flow equation solved is 
  (12) 0u∇⋅ =
where the Darcy velocity is  

 ku
µ

= − ∇p  (13) 

Constant pressures are specified on the boundary cell faces in the x-direction and 
the transverse boundaries are closed to flow. Thus the principal direction of flow is 
aligned with the x-axis. The fluid viscosity is 1 cp and density 1 g/cm3 (both constant). 
The permeabilities are assigned directly to the cell faces instead of cell centers to avoid a 
change in variability because of harmonic averaging with neighboring cells (Romeu and 
Noetinger, 1995). The overall pressure gradient of 1 psi/m is imposed and the mean 
permeability is set at 1700 md to produce an average x-velocity close to 1 m/d for all 
cases.  
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The code we used to compute the flow field is Parssim (Arbogast, 1998), 
developed by the Center for Subsurface Modeling of the Institute for Computational 
Engineering and Sciences at The University of Texas at Austin. It is designed to 
accurately simulate incompressible, single phase flow and reactive transport of chemical 
components through porous media (Arbogast et al., 1996). Parssim uses a logically 
rectangular cell-centered finite difference procedure to discretize the flow equation. For 
large problems it has the option of using multiple processors to compute the solution 
based on a domain decomposition approach. This was the main advantage of using 
Parssim apart from the flexibility of easily specifying pressure boundary conditions on 
entire boundaries.  

The velocities at each cell face obtained from Parssim are written to separate files, 
which are used as an input in the transport calculations. At the desired time of flow 
reversal the velocity direction is reversed instantaneously. The magnitudes of the 
velocities are constant throughout the transport simulation. 

 
3.4 Transport calculations.  We use a random walk particle tracking method to 

simulate tracer transport. This method has been used successfully by the hydrology 
community to simulate mass transport (Tompson and Gelhar, 1990). Convection is 
modeled by integrating particle displacement in the local velocity field over a given time 
step. Dispersion is modeled by an appropriately scaled particle Brownian motion. Further 
details of this approach and our implementation are in the Appendix. The code's solution 
was in good agreement with known analytical solutions: the convection-dispersion 
equation and Taylor’s dispersion in a rectangular duct (John, 2008). Most of our 
simulation runs were completed in about 3 hours for the cases described below. 

Compared to finite difference and finite element methods, this method has certain 
features which made it an appropriate choice for this problem: it is free from numerical 
dispersion, is stable in problems dominated by advection and is much more 
computationally efficient because each particle calculation is done independently. The 
mean distance traveled by the particle ensemble in our setup is limited by the arrival of 
the particles at the outlet boundary. This meant that a flow domain much larger than the 
desired distance of investigation was required, especially in highly heterogeneous cases. 
Also, for the flow reversal cases, it proved convenient to choose the center of the domain 
as the origin of the particles. This eliminated the possibility of particles exiting through 
the inlet boundary. 
Particle Tracking Calculations 

The idea of applying the random walk particle tracking method to solute transport 
problems is based on an analogy between the convection-dispersion equation for solute 
transport and the Fokker-Planck equation for diffusion (Uffink, 1990; Risken, 1989). The 
mass of the injected solute is represented by a finite number of particles. The particles are 
displaced in space by the action of a velocity field (convection) and Brownian motion 
(dispersion). The tracking in three dimensions is based on the equation 

 ( ) ( ) ( ) ( ), ,p p p pX t t X t A X t t B X t Z+ ∆ = + ⋅ ∆ + ⋅ ∆t  (A.1) 

where Xp is the particle position vector [L], A is a drift vector [L/T], B is a tensor 
[L/T1/2] defining the strength of diffusion and Z is a vector of independent normally 
distributed random numbers with zero mean and unit variance. To simulate tracer 
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transport, choose A and B such that the mass density of the particles satisfies the 
convection-dispersion equation 

 
( ) ( ) ( ) 0

c
vc D c

t
φ

φ φ
∂

+ ∇ ⋅ − ∇ ⋅ ⋅∇ =
∂

 (A.2) 

where D is the local dispersion tensor given by 

 ( ) l t
t molD v D I vv

v
α αα −

= + +  (A.3) 

and lα and tα are the longitudinal and transverse dispersivities, respectively. Dmol is the 
molecular diffusivity of the porous medium. It has been shown that Eq. A.1 satisfies Eq. 
A.2 by setting A and B as (LaBolle et al., 1996) 

 
1A v D D φ
φ

= + ∇ ⋅ + ⋅∇  (A.4) 

  (A.5) 2 TD B B= ⋅
When computing A, we neglect the gradients in D and the gradients in porosity 

are zero because of the constant porosity assumption. The drift term (Eq. A.4) hence 
consists of only the velocity term. The velocities are obtained from the flow simulation 
step (Section 3.3). To compute the convective displacement, we integrate over the local 
velocity field for a given time step. Only the face centered velocities and cell centered 
gradients are used in this calculation. To be consistent with the fluid flow equation, we 
take each component of the velocity to vary linearly within a cell in its respective 
direction (Pollock, 1988).  

  (A.6) x xv g x v= + o

where x is the distance of the particle from the cell face, vo is the velocity at the cell face 
and gx is the gradient in the x-velocity. At any particle location 

 x
dx v
dt

=  (A.7) 

Starting with the particle at location 1 (distance from the cell face in x-direction being x1), 
the new location x2 can be found by integrating Eq. A.7 over a time step size of ∆t  
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This gives 
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Similar expressions apply for the y and z components of the particle position 
inside a cell. If the particle crosses a cell boundary in a given time step then these 
expressions are modified to account for the change in cell velocities and gradients (John, 
2008). We found this approach to be more accurate and efficient in highly heterogeneous 
realizations compared with approaches which treat the velocity as constant over a given 
time step. 

To compute the dispersive displacement, we first estimate D using the approach 
suggested by Tchelepi [1994]. An orthogonal co-ordinate axes system, aligned in the 
direction of v, is temporarily setup at the current particle location. In this system, D 
reduces to its diagonal form making it much simpler to solve Eq. A.5 for B. The 
dispersive displacements are computed in this system and transformed to the global co-
ordinate system. Boundary conditions were enforced using a reflection condition on the y 
and z faces and by ensuring that the particles don't exit the system in the x-direction. This 
ensures global mass conservation.  

To generate uniform deviates, we use a random number generator routine adapted 
from Press et al. (1992) which has a long period (>109). The time step size is chosen to 
limit the particle displacement to 1/1000th of the cell size. In all our simulations we use a 
uniform grid with equidimensional cells. 

Particles are introduced uniformly over the entire y-z face at the center of the flow 
domain. As they are transported, statistics of particle x-positions are computed at desired 
time intervals. The dispersion coefficient is estimated as 
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where 2
xσ is the x-variance of the particle ensemble. To calculate the dispersivities, we 

assume that Eq. 2 holds true  

 l
l

D
V

α =  (A.12) 

where the mean velocity of the ensemble is computed from its mean position 

 xV
t

µ
=  (A.13) 

 
4. Results 

4.1 Overview.  We set up several cases by varying the following parameters: 
permeability variance, correlation lengths, anisotropy and tracer travel time (mean 
penetration distance). The base case dimensions are 2048 m × 64 m × 64 m with cell size 
of 1 m × 1 m × 1 m. This is populated with an uncorrelated permeability field (range 1 m 
in all directions) with variance (natural logarithm of permeability) of 1.0 and no 
anisotropy(kz = kx). The longitudinal dispersivity in each cell is set to be 0.01 m 
(following the trend in Fig. 1) and the transverse dispersivity (in y and z directions) is set 
to be a tenth of that (Perkins and Johnston, 1963). These values are constant for all cells. 
The coefficient of molecular diffusion is 1.0×10−4 m2/d (about the same as that of brine-
water at room temperature). Ten thousand particles were used for the transport 
simulations. 
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4.2 Mixing and Spreading.  For the case with uncorrelated permeabilities, Fig. 4 

shows the particle positions at selected times during forward and reverse flow. The 
particle cloud spreads out in the x-direction as it moves forward and on flow reversal the 
cloud returns back to the origin (in terms of its mean position). Statistics of the particle 
positions are processed first to get the rate of change of variance with time (Fig. 5) from 
which we get the evolution of the longitudinal dispersivity with mean position of the 
particle cloud (Fig. 6). In forward flow, the dispersivity for the case with local mixing 
(Dmol=1.0×10−4 m2/d, αl =0.01 m and αt =0.001 m within each cell) grows and reaches an 
asymptotic limit of 1m (transmission value) at a distance of 100 m. For this case, on flow 
reversal, the particle variance decreases first but then grows again with time. The 
particles do not return to their origin and there is a finite variance of the particle cloud at 
the end of the flow reversal experiment (the mean position of the cloud is the same as the 
initial position). The dispersivity estimated on flow reversal (echo value) is about 0.6 m 
(much larger than the input value of 0.01 m). 

The same simulation sequence (forward and reverse flow) was repeated with the 
same velocity field but without local mixing (Dmol=0, αl =0 and αt =0 in each cell). The 
behavior during forward flow is the same as the case with local mixing as can be seen by 
the evolution of particle variance (Fig. 5). But, on flow reversal, the particles now return 
back to their origin and the echo dispersivity estimated is zero. If only the transmission 
results were available, then one would interpret both scenarios in the same way, i.e. one 
would conclude that both cases were in the transport regime where mixing was occurring. 
Both cases would be characterized by a dispersivity value of 1.0 m. But in the case with 
no local mixing, it is the spreading of the tracer because of the velocity field, which has 
resulted in dispersion-like behavior. There is no dissipation or dilution occurring within 
each cell. It is the behavior on flow reversal that shows the fundamental difference in the 
transport mechanism.  

Crucially, the echo dispersivity for the case with local mixing is also much larger 
than the input dispersivity. This suggests that the variations in the velocity field 
significantly enhance mixing. If this were not so, then the echo dispersivity should have 
been close to the core scale (input) value. The transmission and echo dispersivities would 
lie in the overall trend of measured dispersivities (Fig. 1).  

 
4.3 Effect of Correlation Structure.  We continue with the same reservoir size 

and introduce correlation in the permeability fields. Two new cases are simulated by 
introducing a long range component in increasing proportions (refer to Eq. 10) to the 
uncorrelated case described above. In the first, the proportion of permeability variance in 
the long range structure is 20%, in the second it is 80%. The long range component has a 
range of 250 m in the x-direction and 5 m in the transverse directions. Sample cross 
sections are shown in Fig. 7. The increase in layering as the long range structure becomes 
dominant is apparent.  

The results of the particle tracking simulations are shown in Fig. 8 plotted on a 
logarithmic scale. The short scale result is the same as described in Section 4.2. With the 
introduction of more of the long range component, the transmission dispersivity increases 
from 1 m to about 50 m at a length of 200 m. Neither long range case seems to have 
reached an asymptotic limit at this length scale because the dispersivities are still 
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increasing at the end of the forward flow simulation. The transmission dispersivity grows 
almost linearly with time. The striking feature of the flow reversal is the similar increase 
in magnitudes of echo dispersivities of the long range cases. Compared to a value of 0.6 
m for the uncorrelated case, we now observe values that are as large are 5 m for the same 
total travel time. This reinforces the point made in Section 4.2: flow field variations 
strongly enhance the macroscopic effect of local mixing. However the ratio of echo to 
transmission dispersivities is much less than that of the short range case. For the 
uncorrelated case it was 0.6 (0.6 m/1.0 m) for the long range cases it is around 0.1 (5.0 
m/50.0 m). This means that the convective contribution to particle variance is much 
larger than that for the uncorrelated case. 

 
4.4 Effect of Local Mixing.  To estimate the sensitivity of mixing at large scales 

to local mixing, we simulated the cases again with three levels of input (within cell) 
mixing levels: a) only diffusion, Dmol=1.0×10-4 m2/d b) diffusion and core scale 
dispersion, Dmol=1.0×10-4 m2/d, αl =0.01 m and αt =0.001 m in each grid cell c) diffusion 
and larger core scale dispersion, Dmol=1.0×10-4 m2/d, αl =0.05 m and αt =0.005 m in each 
grid cell. The dispersivities estimated are shown in Fig. 9. The transmission behavior is 
almost unaffected by the degree of local mixing (within each cell) because in this 
direction the contribution of spreading dominates. The echo dispersivities increase with 
increasing local mixing but the change is not substantial. This does not mean that local 
mixing can be neglected; without local mixing the echo dispersivities would be zero as in 
Fig. 6. No dilution would be taking place, local concentrations would be large. 

 
4.5 Effect of Permeability Variance.  The results from two cases, both having 

the same correlation structure (20% long range + 80% short range variance) but one 
having a smaller variance (0.3 measured on the natural logarithm of the permeability) 
compared to the other (1.0) are compared in Fig. 10. The low variance case had a 
transmission dispersivity of 5.4 m which is smaller than that of the high variance case 
(13.5 m) but its echo dispersivity is much lower at 0.27 m (5% of transmission) compared 
to 1.88 m (14% of transmission).  

 
4.6 Effect of Permeability Anisotropy.  For the same correlation structure (20% 

long range + 80% short range variance), we compare the results of two cases in Fig. 11. 
One case has no permeability anisotropy (k z= kx) and the other with a low value of 
vertical permeability (kz = 0.0001 kx). Both have similar transmission dispersivities but 
the echo dispersivity of the case with anisotropy is less than that without anisotropy. Note 
that we have not changed the values of the input dispersivities with change in anisotropy.  

 
4.7 Effect of Travel Time.  All of the simulations presented so far have been for 

a fixed simulation time (number of days injected). The cases were repeated with shorter 
injection periods giving results which sample shorter lengths of the model. In Fig. 12, we 
combine the results of a set of simulations done for the case of long range correlation in 
the permeability field. The transmission dispersivities from all the cases overlap and are 
merged. Echo dispersivities increase with penetration distance. Even for the shortest 
penetration distance (about 10 m) the echo dispersivity (about 0.1 m) is much larger than 
the input value. The same data for the uncorrelated permeability case is presented 
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alongside for comparison. The echo dispersivity value at short penetration distance is 
about the same. The trend of increasing echo dispersivities is seen but here the value at 
the largest penetration distance is much closer to its corresponding transmission value. 
 

4.8 Comparison with Measured Dispersivities.  The simulated dispersivities are 
compared with the overall trend of field dispersivities in Fig. 14. Both echo and 
transmission value fall well within the trend. Given only the transmission value and the 
unknown reservoir description, it would be difficult to infer whether the transport regime 
was mixing or spreading. Three possibilities arise. First, the transport is in the pre-
asymptotic regime and the value of dispersivity has not plateaued. Here the interplay 
between convection and diffusion has not reached equilibrium. Typical field cases would 
be in this regime. If the tracer test were run for a longer distance on the same medium 
then a (different) plateau value might be reached. Second, transport is asymptotic but is 
locally convective. Here, the dispersivity value is unique but it does not represent mixing 
or dilution. Third, transport is in asymptotic regime and is well mixed. Here, the 
dispersivity value is unique and represents large mixing zones. 

The ambiguity in interpreting a transmission dispersivity value on the plot is 
reduced if the corresponding echo dispersivity is known. All echo dispersivities are 
greater than core scale values implying that mixing is significant at the field scale. The 
case with longest correlation length has the highest dispersivity value (both echo and 
transmission). This indicates that convection is enhancing the degree of mixing.  

 
5. Discussion 

The most important observation in our work is that significant mixing may occur 
in field scale displacements even in heterogeneous formations. Field scale miscible 
displacements need not be entirely in the convective regime as usually assumed. All the 
echo dispersivities in our simulations are much larger than input values of core- or grid-
block-scale mixing and are comparable to field measured values. This corroborates the 
observations of Mahadevan et al. (2003). The key learning is that heterogeneity, while 
increasing the convective contribution, also increases the amount of mixing in the 
transverse direction. This effect, while smaller than in the longitudinal direction, is not 
negligible because it is compounded over the long travel times, resulting in significant 
dilution of the injected concentration. This suggests that numerical methods based on 
streamline formulations should be used with caution for miscible transport problems. 
Moreover, common practice in reservoir simulation uses numerical dispersion as a 
surrogate for physical dispersion. This can overestimate or underestimate the degree of 
mixing, depending on how the numerical dispersion compares the physical dispersion 
occurring in that volume. 

Another observation is that dispersion-like behavior can be caused by 
heterogeneity alone but this does not imply mixing. Other works (e.g. Coats et al. (2004)) 
have made similar observations. This is the effect of the travel time distribution caused 
by the random geometry of a disordered porous medium in three dimensions. 
Furthermore, transmission dispersivities are weakly affected by the degree of local 
mixing. But this does not imply that local mixing can be neglected. If there were no local 
mixing, then echo dispersivities would be zero. We never observe this because diffusion 
is always present and for homogeneous isotropic media it gets significantly enhanced. 
Even with only diffusion as the local mixing mechanism, we observe echo dispersivities 
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comparable in magnitude to transmission values. Most of the works done on modeling 
solute transport using stochastic theories are based on the assumption of no local mixing 
or infinite local Peclet number (Gelhar, 1986, Dagan, 1990, Rubin, 2003). While they 
might match averaged concentration histories, such theories would not be a good 
predictor of local concentrations (Kitanidis, 1994; Kapoor and Gelhar, 1994).  

Flow reversal provides an unambiguous test to distinguish between spreading and 
mixing. Another approach to resolve this ambiguity is to measure local concentration 
histories at multiple points and compare them with the averaged well head concentration 
history (Cirpka and Kitanidis, 2000a). This approach has been used to interpret an 
intermediate scale lab experiment based on artificially created heterogeneous media (Jose 
et al., 2004). Cirpka and Kitanidis (2000b) show an approach to utilize the results of 
streamtube based tracer transport for the study of mixing-controlled reactive transport. 

We have still not directly addressed the practical issue of how to model mixing at 
the field scale when using an upscaled description. Our results show the need to capture 
not only the effect of heterogeneity on mixing but also the pre-asymptotic (non-Fickian) 
transport behavior. Miscible displacements in typical reservoirs are not expected to reach 
an asymptotic limit that can be described by a unique dispersivity value. Approaches 
based on continuous time random walks and fractional derivative formulations of the 
dispersive flux term have been proposed to address this issue (Benson et al., 2000, 
Berkowitz et al., 2000). Echo dispersivities do indicate the degree of mixing but we do 
not propose to use them as an input value. So how to best represent the sub grid effects in 
coarse scale simulation? Of the many approaches have been proposed to this end (Barker 
and Fayers, 1994; Efendiev et al, 2000; Leonormand, 1996 to name a few), the most 
promising may be by Berentsten et al. (2007). They generalize Taylor’s description and 
derive a one dimensional upscaled model for tracer transport in single phase stratified 
flow that captures the evolution of the dispersive flux in both early and late time scales.  

 
6. Conclusions 

1. Dispersive mixing is significant in field scale miscible displacements even in 
heterogeneous formations. Permeability layering increases the area available for 
transverse mixing and this effect gets compounded over large travel times. 

2. Flow reversal (echo) tests can be used to distinguish between convective 
spreading and dispersive mixing. Echo dispersivities estimated from our 
simulations are comparable in magnitude with the corresponding transmission 
values. They follow the overall measured trend (Figure 13). This suggests that the 
large value of dispersivities observed in Figure 1 need not be the result of 
averaging unknown permeability heterogeneity as commonly understood. 

3. Transport in typical reservoirs is usually in the pre-asymptotic regime where 
Fickian model for dispersion fails to capture the mixing zone growth accurately.  

4. Purely convective transport, in certain cases, can also appear to have a dispersion-
like behavior. It would be incorrect to model this using a dispersive flux term. 

 
Nomenclature 
A Cross sectional area of the medium, L2

C Average concentration, M/L3

C Local concentration, M/L3

D Dispersion coefficient, L2/T 
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Dmol Molecular diffusion coefficient, L2/T 
G Velocity gradient, 1/T 
h Lag distance, L 
k Permeability, L2

L Length of the medium, L 
NPe Peclet number 
p Pressure, M/LT2

q Average flow rate, L3/T 
r Semivariogram range, L 
s Semivariogram sill 
t Time, T 
u Flux vector, L/T 
V Average fluid velocity, L/T 
x Distance in x-direction, L 
X Particle position vector, L 
Z Vector of standard normal random numbers 
  
Greek symbols 
φ Porosity 
∆ Increment 
α Dispersivity, L 
γ Semi-Variance, L2

µ Fluid viscosity, M/LT 
µx Mean penetration distance, L 
σ Standard deviation 
� Local fluid velocity, L/T 
  
Superscripts and Subscripts 
D Dimensionless 
l Longitudinal (to mean flow direction) 
o Cell face 
p Particle 
Pe Peclet Number 
t Transverse (to mean flow direction) 
x X-direction 
z Z-direction 
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Topic 3b: Grain-scale analysis of flow reversal   
Summary 

Flow reversal studies provide insights about mixing mechanisms in flow through 
porous media. In these studies the direction of flow is reversed after the solute slug has 
penetrated into the medium (but not exited) to a pre determined distance. We simulated 
the effect of flow reversal on mixing in two-dimensional porous media using two 
different approaches. In the first approach, we perform direct numerical simulation of a 
solute slug transport (by solving Navier Stokes and convection diffusion equations) in a 
surrogate pore space. This approach allows a direct visualization of mixing occurring 
because of interaction between convective spreading and diffusion in simple flow 
geometries. The effect of flow reversal on mixing is investigated for several diffusion 
coefficients, penetration depths and flow geometries. The second approach uses particle 
tracking to simulate the effect of flow reversal at larger length scales.  This approach is 
free of numerical dispersion, can be used in the absence of diffusion and has no limits on 
the size of the simulation.  It is, however, limited to layered media flow. 

The simulation studies presented in this paper explain the mechanism of mixing and 
the origin of the irreversibility of dispersion in flow through porous media. We also 
explain several experimental observations on flow reversal tests found in the literature.  

Mixing in porous media takes place because of interaction between convective 
spreading and molecular diffusion. The converging-diverging paths and flow around 
impervious sand grains causes the solute front to stretch and split. In this process the area 
of contact between the solute slug and the resident fluid increases by an order of 
magnitude and diffusion becomes an effective mixing mechanism. This local mixing, 
caused by diffusion, is irreversible. 

For purely convective transport, upon flow reversal solute particles retrace their path 
back to the inlet. Convective spreading gets cancelled and echo dispersion is zero. 
Diffusion even though small in magnitude, is responsible for local mixing and making 
dispersion in porous media irreversible. Thus it is important to include the effect of 
diffusion when analyzing miscible displacements in porous media. 

 
Introduction 
A solvent slug injected for a miscible enhanced oil recovery process mixes with 

the reservoir fluid at its leading edge and with the chase fluid at its trailing edge. This 
mixing dilutes the slug and reduces its displacement efficiency. Predicted oil recovery in 
such processes may differ by up to 15% of initial oil in place depending on the amount of 
mixing taking place in the medium (Johns et al., 2002).  Therefore, understanding and 
quantifying mixing is important for determining the effectiveness of miscible floods. 

Traditionally, mixing in flow through a porous medium is quantified by carrying out 
transmission dispersion experiments in which one miscible fluid displaces another 
entirely through a core sample. The flow averaged effluent concentration history is 
analyzed using a solution to the one-dimensional convection-diffusion equation to obtain 
the dispersion coefficient which is used to quantify mixing in flow through the medium 
(Lake, 1989; Bear, 1972). 

The dispersion coefficient describes apparent mixing because it is averaged over the 
entire outlet and includes contributions (in inseparable form) from (i) convective 
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spreading, caused by variations in path lengths and velocities of solute particles traveling 
along different streamlines and (ii) molecular diffusion.  

Transmission measurements do not give any information about the nature and origin 
of dispersion in flow through porous media. For example, we consider two different 
hypotheses for solute transport and mixing in homogeneous porous media which could 
explain the observed dispersion.  

1. Convective Spreading Hypothesis: A solute particle travelling on a given 
streamline stays on that streamline until the exit (Fig. 1(a)). It has no interaction with the 
particles on adjacent streamlines. In this case dispersion is a result of convective 
spreading only (Coats et al., 2004). Diffusion being much smaller in magnitude can be 
neglected.  

2. Local Mixing Hypothesis: Solute particles can jump to adjacent streamlines 
because of diffusion. Diffusion redistributes particles within the medium (Fig. 1(b)). In 
this case dispersion is a result of interplay between convective spreading and diffusion. 
Diffusion, being small in magnitude as compared to convective spreading has negligible 
effect on overall spreading of the solute slug.  

Both hypotheses predict normally distributed solute concentration profiles and 
histories and explain experimentally observed dispersion behavior but they have an 
important fundamental difference. In the first hypothesis solute particles are just getting 
spread, not getting mixed. Spreading is the change of shape of the slug as it gets distorted 
in a medium consisting of high and low velocity regions. The solute concentration 
anywhere within the slug is not reduced   (Kitanidis, 1994). Only when a cup-mixing 
average is taken the concentration appears to be reduced. On the other hand, in the 
second hypothesis the solute slug is undergoing local (in-situ) mixing and getting diluted. 
Local mixing is the true mixing and causes a reduction in solute concentration at a point 
scale.  

Dispersion coefficient obtained from an averaged transmission effluent concentration 
history cannot distinguish between spreading and local mixing. Therefore, flow reversal 
studies are carried out where the direction of flow is reversed after the solute slug has 
penetrated into the medium (but not exited) to a pre determined distance. Backward 
effluent concentration history obtained at the outlet (original inlet) is analyzed to obtain 
echo dispersion coefficient. Echo dispersion coefficient can determine relative 
significances of convective spreading and local mixing in the dispersion process and 
provide insights about its nature.  

Convective spreading hypothesis implies that on flow reversal the solute particles 
would retrace their paths and the injected slug will be received back at the inlet without 
any dissipation. The convective spreading of solute particles would thus be reversible and 
echo dispersion will be zero. Reversibility has been demonstrated for slow, laminar flows 
between disordered arrays of cylinders (Hiby, 1962) and flow between concentric 
cylinders (Taylor, 1972). 

However, echo dispersion experiments on homogeneous core samples show 
dispersion to be irreversible (Hulin and Plona, 1989). The solute slug continues to 
disperse (and mix) as it moves back towards the original inlet. Dispersivities obtained 
from such flow reversal experiments on homogeneous core samples in the lab (Hulin and 
Plona, 1989; Rigord et al., 1990) and from single well tracer tests in field (Mahadevan et 
al., 2003) are as large as the corresponding transmission values. On the other hand, echo 
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dispersion experiments on layered media show largely reversible dispersion (Hulin and 
Plona, 1989; Rigord et al., 1990a; Rigord 1990b). Thus comparing the transmission and 
echo dispersivities gives information about heterogeneities of the medium and helps 
ascertain the nature of the dispersion mechanism. The irreversibility of dispersion (in 
homogeneous media) is contrary to the convective spreading hypothesis and indicates 
that there is local mixing taking place.  The fraction of irreversibility of dispersion 
depends on the degree of local mixing taking place. 

 We studied impact of flow reversal on dispersion and mixing using two different 
numerical methods.  In the first method, we carried out pore-scale simulations for 
miscible flow in several two-dimensional (2D) flow geometries. We used a multi-physics 
modelling software FEMLAB (2004) (now COMSOL) to solve the Navier-Stokes and 
convection diffusion equations directly for the given flow geometry. This approach 
allows investigation of solute transport and mixing from first principles without making 
assumptions about macroscopic dispersive models for mixing (Jha et al., 2006). We can 
directly visualize mixing in the medium because of interaction between convective 
spreading and diffusion. We also compute forward (transmission) and backward (echo) 
effluent concentration histories for comparison with the experimental observations. We 
carried out pore-scale simulations in several simple flow geometries to understand the 
mechanisms of local mixing and the factors influencing it. Then we use the insights 
gained to investigate effect of flow reversal on dispersion in more realistic models of 
porous media. 

The second approach uses particle tracking to simulate solute transport at larger 
length scales.  This approach is free of numerical dispersion, can be used in the absence 
of diffusion and has no limits on the size of the simulation field.  We show results for the 
limiting case of flow through layered media. We explain the mixing mechanism and the 
reason for irreversibility of dispersion in porous media.  

  

Mixing Mechanism and Effect of Flow Reversal on Mixing 

We have carried out direct numerical simulation using FEMLAB in two-
dimensional porous media consisting of a rectangular plate with circular holes in it (Jha et 
al., 2006). The holes represent the sand grains and the fluid can flow through the pore 
space between them. The size of the flow domain is 1800×800 micro meters. The grain 
diameter is taken as 100 micro meters. In each case, a solute slug is injected into the 
medium at a small velocity of 10-5 m/s for 20 seconds (which corresponds to 0.1 PV, 
approximately). The outlet face of the medium is maintained at atmospheric pressure. All 
other boundaries including the sand grain boundaries are of “no-slip” kind. The steady 
state velocity at each point inside the medium is obtained by solving the Navier-Stokes 
equation. The Reynolds number is very low in these simulations (Re ≈ 10-3) and inertial 
effects may be neglected. The solute concentration as a function of time and space is then 
determined by solving the two-dimensional convection-diffusion equation. This equation 
uses the computed velocities at each point and an input diffusion coefficient, Do = 10-11 
m2/s. When the slug reaches the center of the medium the direction of flow is reversed. 
Visualization of mixing occurring because of interaction between convective spreading 
and diffusion illustrates the mixing mechanism. Deviation of backward (or echo) effluent 
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concentration history from input concentration history also indicates the degree of 
irreversibility of dispersion which in turn indicates relative significance of local mixing in 
dispersion. We first present simulation results for simple flow geometries.  

 
(i) Plug Flow in a Channel (Fig. 2) - In this case, the fluid velocity is uniform 

throughout the cross-sectional area of the medium. There is no local velocity gradient and 
convection plays no role in dispersion. Dispersion is caused solely by diffusion. Mixing 
and dispersion are the same in this case. Upon flow reversal, the slug encounters exactly 
the same conditions and behaves exactly same way that it would have done had it 
continued to move forward. Therefore, flow reversal has no effect on dispersion and 
dispersion is completely irreversible. Local mixing, as evidenced by concentration 
transition zones at the front and back of the slug, is small.  

 
 (ii) Parabolic Velocity Profile in a Channel (Fig. 3) - In this case the fluid 

velocity is a maximum at the center of the medium and zero at the walls. Because of 
velocity gradients the solute-front stretches and the contact area between regions of large 
and small solute concentrations increases (Taylor, 1953; Aris, 1959).  Therefore, more 
local mixing takes place compared to case (i). However, convective spreading is much 
larger than local mixing. Upon flow reversal, the convective spreading cancels and 
dispersion is largely reversible (except for small local mixing).  

 
(iii) Flow around a Grain (Fig. 4) - Here the solute slug encounters an obstruction 

in form of a sand grain. The grain being impervious and having no-slip boundaries, the 
solute front splits around the sand grain and then rejoins. Because the splitting increases 
the interface between large and small solute concentrations, mixing by diffusion is 
enhanced. Upon flow reversal, even though convective spreading vanishes, the local 
mixing is large as compared to that in Figures 2 and 3.  Dispersion is not as reversible as 
in case (ii).  

Experiments and simulations in a similar flow geometry show that the tracer 
transport is only partially reversible even with a very small diffusion coefficient (Flekkoy 
et al. 1995; Muzzio et al., 1992). However, this irreversibility is insignificant for the low 
Reynolds number (Re ≈ 10-3) in our simulations and not considered. 

 
(iv) Flow around Three Grains (Fig. 5) - More grains cause more stretching, 

splitting and rejoining of the solute slug.  This results in enhanced local mixing (Muzzio 
et al., 1992). Greater local mixing yields greater irreversibility of dispersion.  

Discussion on Local Mixing Mechanism 
A comparison of the backward (or echo) effluent concentration histories at the 

original inlet (which becomes the outlet during backward flow) for all the previous cases 
is shown in Figure 6 for Do = 10-11 m2/s. These histories are velocity weighted averaged 
solute concentrations at the outlet face. The input concentration and slug size is same in 
all the cases. If dispersion were completely reversible, the effluent concentration history 
in each case would be the same, which in turn would be same as the input concentration 
history. The deviation of the effluent history from the input history indicates the degree 
of irreversibility of dispersion resulting from local mixing. In the examples presented 
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here, a longer contact area between large and small solute concentrations allows more 
local mixing to occur during same interval of time. The greater the local mixing, the 
greater is the extent of irreversibility.   

The magnitude of diffusion affects local mixing significantly.  Figure 7 compares 
the backward effluent concentration histories for the same cases for a smaller diffusion 
coefficient Do = 10-12 m2/s. Reducing the diffusion coefficient has reduced the local 
mixing and all the curves shift towards the input concentration. In the limit of zero 
diffusion all the effluent concentration histories will coincide with the input 
concentration.  On the other hand, if we increase the diffusion coefficient to 10-10 m2/s, 
more local mixing will result (Fig. 8). Dispersion is irreversible in all the cases and all of 
the curves are nearly the same.   

It is to be noted that we have made an assumption that upon flow reversal the 
solute slug attains steady state velocity immediately in the backward direction. It is a 
reasonable assumption for the slow velocity in our simulations. In reality, because of 
slower velocity during transient state there will be more time for diffusion to cause 
mixing. Therefore, by making assumption of instantaneous achievement of steady state 
we under-predict mixing slightly.  Since our conclusions are qualitative in nature and not 
quantitative, we neglect this effect. 

Flow Reversibility Simulations in a Disordered Pack 

We test the insights gained from simulations in simple geometries by conducting 
flow reversal studies in a disordered arrangement of disks. Even though this model of a 
porous medium is two dimensional and has an unrealistically large porosity, it does 
capture the basic physics of the process and allows qualitative comparisons with 
experimental observations.  

The dimensions of the flow domain and flow conditions are same as described for 
previous cases. The only difference is that now the medium has many disks representing 
sand grains and the diameter of the disks are half of that used previously.  

The velocity inside the medium varies widely both in longitudinal and lateral 
directions. Therefore, the solute slug does not move uniformly throughout the cross-
section of the medium. It spreads more in the regions of high velocity (Fig. 9 (a), (b)). 
The differential movement of different parts of the solute slug across the cross section 
grows with time and distance traveled. If the slug keeps on moving in the forward 
direction and effluent concentration is monitored at the outlet, it would not satisfy the 1D 
convection-diffusion equation (in other words, concentration history curve is non-
Gaussian). However, if the flow direction is reversed and effluent concentration history is 
monitored at the original inlet, the backward or echo dispersion curve becomes Gaussian 
because the convective spreading gets cancelled upon flow reversal (Flekkoy et al., 1996) 
(Fig. 10). Cancellation of convective spreading is also evident if we compare solute 
concentration profiles at the same distance from the inlet in forward and backward flow 
(Figs. 9 (a) and (c)). The two profiles look similar in shape. However, the backward 
profile is more dispersed because of irreversible local mixing.   

If the diffusion coefficient is increased, the solute spreads more in the lateral 
direction and greater local mixing takes place. The effect of heterogeneity on dispersion 
is reduced (Jha et al., 2006), the degree of irreversibility of dispersion increases and 
forward and backward concentration histories become similar (Fig. 11). 
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Figure 12 shows the effect of penetration depth on local mixing. In these 
simulations, solute is injected continuously into the medium and flow is reversed from 
different penetration depths of the solute front. The comparison of backward dispersion 
curves (evaluated at original inlet) along with transmission dispersion curve (evaluated at 
original outlet) is shown in Figure 12.  The transmission curve is non-Gaussian and all 
the backward-dispersion curves are Gaussian. Greater penetration depth corresponds to 
greater time spent by the solute front inside the medium and hence increased local 
mixing. Therefore, we can see greater irreversibility of dispersion for greater penetration 
depth.  Moreover, the flow reversal eliminates the non-Gaussian manifestation of the 
heterogeneous flow field.  

All of these runs indicate that local mixing depends on diffusion coefficient, area 
available for diffusion between regions of large and small solute concentration 
throughout the process and time spent by the slug inside the medium.   

Flow Reversibility Simulations in an Ordered Pack 

Flow reversal simulations were also carried out for a regular arrangement of 
disks. In this case the local velocity does not vary widely from point to point and even 
small diffusion is able to eliminate radial concentration discontinuities in a pore (Jha et 
al., 2006). The solute slug appears to move like a plug. The effect of convection, splitting 
and rejoining around sand grains is to enhance the effective diffusion coefficient and 
mixing during flow is “diffusion-like”. It is analogous to case (i) (plug flow) but with a 
larger dispersion (effective diffusion) coefficient. Upon flow reversal, the slug behaves 
exactly same way while flowing backward that it would have done while flowing 
forward. Therefore flow reversal has no effect on dispersion and dispersion is completely 
irreversible (Hulin and Plona, 1989; Rigord et al., 1990) (Figs. 13, 14).  

For zero diffusion, we would expect no local mixing (except for that arising from 
the numerical dispersion) and hence dispersion would be reversible. Simulations for 
small diffusion-coefficient tend to be numerical unstable. Since increasing the velocity 
has the same effect on local mixing as reducing the diffusion coefficient (Jha et al., 
2006), we simulated the process for a diffusion coefficient 20 times smaller and twice the 
velocity (it has same effect on local mixing as reducing diffusion coefficient by a factor 
of forty.   The results show partial reversibility of dispersion for this increased Peclet 
number (Fig. 15). If there is no diffusion at all the solute particles will move along 
individual streamlines. Upon flow reversal they would retrace their path to origin and 
dispersion will be reversible. 

Flow Reversibility Simulations in Layered Flow 

Memory limitations constrain the size of the porous medium in which we can 
explicitly represent the location of grains.  To extend the above insights we simulate 
transport in a layered flow field using a particle tracking approach. The details of the 
particle tracking algorithm are as follows. 

Particle tracking algorithm 
The particle tracking procedure uses a given velocity field and molecular 

diffusion to compute the positions of point-like tracer particle released at the origin. The 
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velocities are parallel to the flow domain (y component is zero) and are constant along 
the entire length. The net displacement of a particle is the sum of the convective and 
diffusive displacements. 

  xn+1 − xn = un∆t + ∆r cosϕ n
                   (A.1) 

  yn+1 − yn = ∆r sinϕn
    (A.2) 

  ∆r = 2Do∆t       (A.3) 

where u is the velocity at point (xn, yn) and ∆r is the diffusive displacement. Do is the 
molecular diffusion coefficient, which in the runs shown here is constant at Do = 10-9 
m2/s. φn is the direction of the diffusive displacement at point (xn, yn) chosen randomly 
from a uniform distribution between 0 and 2π.  ∆t is a constant time step size and set to 
ensure a maximum dimensionless convective step size of at most 0.01 in the y-direction 
(∆y/H) and 0.001 in the x-direction (∆x/L). 

The dispersion coefficient is computed from the spatial variance of the particles at 
a given time as 

2

2
x

LD
t

σ
=  .                                                                       (A.4) 

 
The flow domain consists of five layers of equal thickness and different velocities as 

in Figure 16. The height of the medium is 1 m.  For all cases, we begin with an ensemble 
(a swarm) of 2000 particles at x = 0 and move them to the right (forward flow) or left 
(backward flow) as required by the case being investigated. The base velocity v was 
varied from 0.3 ft/day to 0.003 ft/day. In each case, the evolution of spatial variance of 
the particles (from which the dispersion coefficient is derived) is computed with 
increasing time (equivalent to mean distance traveled) for both forward flow and reversed 
flow schemes.   

For the case with no diffusion and with v = 0.3 ft/day, the distribution of particle 
positions (the concentration profile) at two different times is shown in Figure 17 (a). On 
flow reversal, the tracer particles retrace their trajectory (on the same streamline) and 
echo dispersion is zero as shown in Figure 17 (b).  

For the same flow rate but with diffusion (Do = 10-9 m2/s), the profiles are in Figure 
18. Note that even though the spreading in the transverse direction is because of diffusion 
alone, the concentration (number of particles/area) is beginning to homogenize in the 
transverse direction after traveling about 400 m in the positive x direction. On flow 
reversal, the particles no longer retrace their paths as they return to the inlet. The 
diffusive jumps cause them to travel on different streamlines on the return path. The large 
spread of the particles about the inlet indicates large mixing in both transverse and 
longitudinal directions. 

Eq. A-4 above showed how we can summarize the particle positions with a dispersion 
coefficient.  Figure 19 shows the evolution of the dimensionless dispersion coefficient 
(dispersion coefficient divided by diffusion coefficient) with mean distance traveled. The 
dimensionless dispersion coefficient increases to an asymptotic value of about 5000 (that 
is 5000 times larger diffusion) at about 2000 m (Fig. 19).  
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After flow is reversed from four different distances, the evolution of the echo 
dispersion coefficient is computed for the swarm as it returns towards the inlet. As they 
return, the echo dispersion coefficients decrease at first and then stabilize when the 
swarm nears the original inlet.  The larger the travel distance, the smaller is the decrease 
to the point that when transmission dispersion stabilizes, the echo dispersion does not 
decrease at all. The echo dispersion coefficients progressively increase with the 
penetration distance finally reaching the same value as the asymptotic transmission value. 
The echo dispersion at this distance evidently has no convective component.  This very 
large value (5000) indicates that local mixing is very large.  

At smaller distances, the dispersion is still convection dominated (the transmission 
dispersion coefficient is still increasing). Since the echo dispersion at short distances 
abruptly decreases immediately on flow reversal there must be a substantial convective 
component to the transport. 

The same simulation was repeated for lower velocities as summarized in Figure 20 
where the results are compared at four length scales. Smaller velocities are equivalent to 
increasing the diffusion coefficient as expected in gas-gas binary flow. The same trend in 
dispersion coefficient growth occurs but the asymptotic value is reached much closer to 
the inlet (up to 200 m for the case with slowest velocity). The echo dispersion 
coefficients compare in the same way, being lower than the transmission values at short 
distances and equal to it at its asymptotic value. The fact that the echo dispersion 
coefficients also decrease with decrease in velocity indicates the significance of 
convection in enhancing local mixing.   

This numerical experiment demonstrates that the large echo dispersion coefficients 
estimated in Mahadevan et al. (2003) are not unreasonable.  Irreversible mixing takes 
place even in large-scale miscible displacements. For this case, the traditional definition 
of dispersivity does not apply because the dispersion coefficient does not scale linearly 
with velocity because of the unidirectional nature of the velocity field (Lake and 
Hirasaki, 1981). With the use of a heterogeneous velocity field, a linear scaling is 
expected as demonstrated in particle tracking done on pore-network models (Bruderer 
and Bernabe, 2001). 

 
Summary and Conclusions 

• The dispersion coefficient obtained from transmission dispersion experiments has 
effects of convective spreading and diffusion lumped together. Flow reversal tests 
(echo dispersion) discriminate between convective spreading and local mixing 
("true” mixing). Echo dispersion for the former case approaches zero and in the 
latter case equals transmission dispersion. Fraction of reversibility of dispersion 
indicates the degree of local mixing.  

• Pore scale simulations show that mixing caused by diffusion is enhanced by the 
local velocity gradients induced by the grain arrangement and because of splitting 
of the solute front along sand grains. Local mixing caused by diffusion is 
irreversible.  

• Diffusion is the fundamental mechanism of local (“true”) mixing at pore scale. 
• In ordered arrangement of disks with no significant variation on flow velocity, a 

small amount of diffusion is enough to eliminate transverse differences in solute 
concentration and cause complete irreversibility of dispersion. 
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• In heterogeneous media local heterogeneity can cause wide variations in flow 
velocity. Convective spreading dominates transport and high diffusion is required 
to make the dispersion irreversible. 

• Diffusion can cause irreversibility of mixing even at the field scale. 
 
 
Nomenclature 

C Average concentration, M/L3

Do Molecular diffusion coefficient, L2/T 
DL Dispersion coefficient, L2/T 
Dp Grain diameter, L 
L Length of the medium, L 
r  Diffusive displacement, L 
T Time, T 
U Velocity in x-direction (local) 
V Interstitial flow velocity, L/T 

 

 
Greek Symbols 

∆ Increment 
σ Standard deviation 

 
Superscripts and Subscripts 

L Longitudinal (to mean flow direction) 
n Step index in particle tracking 
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Topic 4: Impact of reservoir heterogeneity  

Overview of heterogeneity effect 
Reservoir heterogeneity in porous media increases oil and gas contact area, hence 

allow the diffusion to be magnified and ultimately increases reservoir mixing. Correlation 
length and variation of the permeability distribution are the parameters that affect 
reservoir mixing. For example considering the permeability distribution for four synthetic 
reservoir models given in Figure Ov1, where models detail is given in Table Ov1. As it 
can be observed all reservoirs have the same mean permeability and variations. The only 
difference is correlation ranges that vary from 250 m in reservoir 1 to 1 m (random 
heterogeneity) in reservoir 4. We performed tracer test (First Contact Miscible 
Displacement) on these reservoirs and we analyzed reservoir mixing.  Figure Ov2 shows 
concentration profile at 0.5 PVI and Figure Ov3 shows average reservoir mixing versus 
traveled distance. Average reservoir mixing is not transmission dispersivity. It is the 
averaged local mixing over the cross section for various traveled distance. Local mixing 
is obtained by matching gridblock concentration history to the solution of 1D convection-
dispersion equation. Average local mixing approximately estimate true level of mixing 
and it does not include convective spreading. It clearly can be seen from Figure Ov3 that 
reservoir mixing increases as correlation range is increased. Since numerical dispersion is 
equal for all models, this increased reservoir mixing compare to reservoirs 3 and 4 is due 
to increased fluid contacts that enhances reservoir mixing.   

 
Figure Ov4 shows echo and transmission dispersivity for all reservoirs after the 

same traveled distance. Echo dispersivities are much smaller than transmission 
dispersivities for highly correlated reservoirs; however they are about the same for 
reservoir 4, which indicates that reservoir mixing is complete in reservoir 4. The 
increased echo dispersivity from reservoir 4 toward reservoir 1 indicates enhanced 
reservoir mixing due to reservoir heterogeneity. 

 
Mixing due to reservoir heterogeneity: 
 
Total dispersivity in a heterogeneous reservoir model is a summation of 

dispersivity due to reservoir heterogeneity, numerical dispersivity and physical input 
dispersivity. 

tot num input hetro hetro tot num inputα α α α α α α α= + + ⇒ = − −  
 
We performed series of simulation on reservoir 1 by changing numerical and 

input dispersivity (gridblock dispersivity). In all these simulations we kept reservoir 
heterogeneity to be constant. Figure Ov5 shows the reservoir mixing versus traveled 
distance for heterogeneity of reservoir 1. It can be observed that dispersivity due to 
reservoir heterogeneity only depends on heterogeneity structure of the porous media and 
gridblock size or input dispersivity does not affect hetroα . This understanding was the 
main idea to correlate dispersivity based on the heterogeneity and flow parameters. 
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Figure Ov6 shows a contour map that correlate dispersivity due to heterogeneity 
to VDP and λx.  It shows that dispersivity increases as correlation length and permeability 
variation is increased. 

 
Appropriate gridblock size and reservoir heterogeneity: 
  
We used reservoir models 1 and 4 to find the appropriate gridblock size that can 

be used to mimic true level of mixing. We upscaled each model by 8x2 and 16x2 
gridblocks to one equivalent gridblock. Figure Ov7 shows the fine-scale and upscaled 
reservoir model and also their concentration profile at 0.7 PVI. Figure Ov8 shows the 
outlet concentration history or FCM recovery curve for both reservoirs and their upscaled 
model. As it can be seen from recovery curves and concentration profiles, reservoir 1 has 
almost the same recovery curve for fine-scale and upscaled model due to large reservoir 
mixing, however in reservoir model 4 the upscaled model has less recovery due to over 
mixing. It can be concluded that appropriate gridblock size depends on the reservoir 
mixing. Large correlation length imply that large gridblock sizes can be used (there is 
much room for upscaling). 

  
To find the appropriate gridblock size we are required to know the amount of 

reservoir mixing in advance, so we should be able to estimate reservoir mixing from 
reservoir heterogeneity and flow parameters. In this study we performed inspectional 
analysis on a single phase multicomponent system for a first contact miscible 
displacement 2D model to find scaling groups that may impact local reservoir mixing. 

    
Inspectional analysis: 

Our results indicate that concentration variation depends on 6 parameters and 4 
scaling groups. 
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Analytical and Numerical Investigation of Heterogeneity--
Discussion 

Mixing of miscible gas with oil in a reservoir decreases the effective strength of 
the gas, which can adversely affect miscibility and recovery efficiency.  The level of true 
mixing that occurs in a reservoir, however, is widely debated and often ignored in 
reservoir simulation where very large grid blocks are used.  Large grid blocks create 
artificially large mixing that can cause errors in predicted oil recovery. 

This paper examines mixing that occurs in porous media by solving for single-
phase flow in a connected network of pores.  We differentiate between true mixing that 
can reduce the effective strength of a miscible gas or surfactant from apparent mixing 
caused by convective spreading.  This work differs from network models in that we 
directly solve the Navier-Stokes equation and the convection-diffusion equation to 
determine the velocities and concentrations at any location within the pores.  Flow in 
series and layered heterogeneous porous media are modeled by using many grains in 
different arrangements.  We consider slug, continuous, and partial injection as well as 
echo tests (single-well tracer tests) and transmission tests (interwell tracer tests).  We 
match the concentrations from the pore-scale simulations to the analytical convection 
dispersion solution that includes both transverse and longitudinal dispersion coefficients. 

The results show that for flow in series and in layers, echo and transmission 
longitudinal dispersivities become equal and reach an asymptotic value if complete 
mixing over a cross section perpendicular to flow has occurred.   In practice, the 
asymptotic value of dispersivity may never be reached depending on pattern-scale 
heterogeneity and well spacing.  Transverse dispersion coefficients also are scale 
dependent, but they decrease with traveled distance.  We further demonstrate that the 
classical Perkins-Johnston relationship between longitudinal dispersion coefficient and 
fluid velocity is obtained.  We conclude that echo dispersivities are reliable indicators of 
true mixing in porous media.     
 
Introduction 

Oil recovery from miscible gas floods is highly dependent on the magnitude of 
mixing at the field or pattern scale.1-4  Mixing acts to drive the composition route further 
into the two-phase region and away from the critical locus in multicontact miscible 
floods. Because the composition route moves further away from the critical locus and 
deeper into the two-phase region, the local displacement efficiency is reduced, in some 
cases, by nearly half of incremental oil recovery (recovery post waterflood).3-4  If 
reservoir mixing is large, good recovery efficiency may require operating at pressures 
well above the minimum miscibility pressure (MMP) or beyond the minimum enrichment 
for miscibility (MME).3-5

Numerical dispersion is also present in reservoir simulations, which can 
significantly increase mixing when large grid-block sizes are used.  Methods that achieve 
low mixing, such as those used in streamline simulation, may reduce the level of mixing 
below that which is expected at reservoir scale.  Streamline simulations may also not 
adequately include crossflow between streamlines.  It is important to determine the 
appropriate level of dispersion at reservoir scale so that we can attempt to model it 
correctly.  
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Mixing in a reservoir is primarily caused by molecular diffusion of solute (or gas) 
from one streamline to the next within the pores.  Mixing causes dilution of the gas, 
which can decrease oil recovery.  Reservoir mixing is enhanced by any mechanism that 
increases the area of contact between the gas and the oil, thereby allowing the effects of 
diffusion to be magnified.  This is in essence the cause of scale-dependent dispersion. 
The longer the distance traveled of a solute the greater the surface area exposed to 
diffusion and the longer time diffusion has to work.  The contact area grows primarily 
because of variations in streamlines and their velocities around grains and through layers 
of various permeabilities (heterogeneity).  Crossflow, such as that caused by gravity, can 
also allow for greater mixing when a fluid of different density than the reservoir oil is 
injected.  Mixing can also be enhanced by the effects of other neighboring wells (fluid 
drift), and by differences in chemical potentials between components in different phases, 
that is, by phase mass transfer.  Drift can increase the contact area between the injection 
and reservoir fluids, which allows for enhanced mixing by diffusion.   

The level of mixing in a reservoir is generally quantified by measuring the dispersion 
coefficient and its associated dispersivity (for 1-D flow L o LD D vα= + ).  Transmission 
dispersivities include both actual dilution (mixing) and convective spreading.  Convective 
spreading at the pore scale occurs solely because of solute (or gas) taking different 
streamlines with varying velocities and arriving at different times to a fixed location.  
Convective spreading for continuum porous media is caused by flow through layers of 
differing permeability.  Lake and Hirasaki6 considered this case and showed that 
complete mixing across layers occurs when the transverse dispersion number is greater 
than five.  For layered flow with transverse dispersion numbers less than 0.2, 
transmission dispersion coefficients will never approach an asymptotic limit no matter 
the distanced traveled.  The transverse dispersion number is the ratio of the time required 
for solute to cross the medium longitudinally owing to convection to the time required for 
solute to cross the transverse direction owing to dispersion.        

Measured concentrations are typically made in well-mixed boreholes where 
differentiation between convection spreading and actual mixing is not possible.  
Differentiation is only possible when local measurements of dispersion in the reservoir 
can be made.7  Figure 1 illustrates the differences between convective spreading and 
actual mixing for two levels of diffusion in a reservoir that contains four layers of varying 
permeability, and hence fluid velocity.  The injection well (at the left of Fig. 1) introduces 
a concentration pulse that travels through the formation according to the velocity in each 
layer.  For zero diffusion (Fig. 1a), there is no actual mixing of injected fluids with 
reservoir fluids and the concentration pulse travels through each layer without losing its 
peak strength.  Local measurements of mixing (in a given layer) or that measured by an 
echo test would show one concentration pulse as is illustrated in the concentration profile 
of Fig. 1a.  The concentration profile at the production well (outlet as measured during a 
transmission test), however, indicates that mixing occured in the reservoir.  This apparent 
mixing is what we term convective spreading.   

When diffusion is present, as it always is, mixing occurs between layers and at fronts 
(see Fig. 1b).   Mixing is enhanced in this case by the increased area of contact between 
layers.  True mixing is not reversible by an echo test, as is shown in the concentration 
profile of Fig. 1b.   True mixing can only be differentiated from apparent mixing by 
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comparing the overall composition profile (from a transmission test) to local 
measurements made by an echo test.     

When mixing is complete in the transverse direction, mixing zone growth scales 
with the square root of time.  This type of dispersion is Fickian, as opposed to 
NonFickian.  NonFickian dispersion is caused by the presence of convective spreading, 
and therefore does not scale with the square root of time.  Purely convective spreading, 
such as that indicated in Figure 1a, gives mixing zone growth for layered flow that scales 
linearly with time.  The goal of reservoir engineers should be to understand how much 
mixing is occurring at the field scale compared to convective spreading because of their 
different impact on miscible gas and chemical enhanced oil recovery (EOR).  Only true 
mixing causes the effect of strength of a mixing gas to be decreased or surfactant 
concentrations to be reduced. Because they have different impact on miscible 
displacement processes.  That is the main purpose of this paper.    

Mixing is an irreversible phenomenon,8 in that flow reversal will not cause the 
fronts to move back together at the injection well.  Thus, echo tests (single-well tracer 
tests), which reverse flow, measure a level of mixing that is equal to or less than that 
obtained from transmission tests.  This is because echo tests eliminate convective 
spreading that occurs in a porous media.   

Mahadeven et al.9 examined single-well tracer tests (echo tests) that were 
specifically selected because of their small fluid drifts.  Dispersivites estimated from 
those tests were on the order of 2 to 3 ft, substantially greater than laboratory 
dispersivities of approximately 0.01 – 0.03 ft.  Thus, those field tests are a direct proof of 
the scale dependency of dispersion.   

There are hundreds of papers that examine the scale dependence of dispersion for 
solute transport in homogeneous and heterogeneous aquifers.10-11 A variety of complex 
dispersivity models and methods have been generated that exhibit scale-dependent 
dispersion in heterogeneous aquifers.  Examples include random-walk models, fractional 
derivative models, time-dependent dispersivities, and non-local dispersivity models.10-13 
Transmission dispersion in heterogeneous porous media has been well documented to 
depend on the permeability heterogeneity (correlation length and standard deviation), 
aquifer aspect ratio, and diffusion level (solute diffusion in gas versus water).14  
Asymptotic values of dispersivity (Fickian dispersion) have been observed with 
continuum porous media simulations, and predicted by stochastic modeling studies.15  In 
several studies, macro-scale dispersivity are taken as a function of time until constant 
asymptotic values are reached, depending on the level of heterogeneity.16-17  Very few 
papers have discussed measurement of transverse dispersion, but transverse dispersivity 
is also likely dependent on the pore structure, grain size, and heterogeneity.18-21   

In this research, we examine both transmission and echo dispersion at the pore 
scale to illustrate scale dependency of dispersion for a variety of boundary conditions and 
heterogeneities.  We first present the simulation model and the equations that are used to 
solve for velocities and concentrations within the pores.  Next, continuum simulations are 
performed to examine further the differences between convective spreading and mixing, 
and to better explain echo and transmission results.  We then demonstrate for pore-scale 
models that the classical Perkins and Johnston dispersion curves are obtained as a 
function of the pore Peclet number. Unlike previous research, results for more realistic 
non-uniform, series, and layered pore-scale models are also given.  Both two-dimensional 
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and three-dimensional pore morphologies are considered as well as transverse and 
longitudinal dispersion coefficients (DL and DT).  Last, conclusions are presented.  

 
Mathematical Model 
We model solute transport for both continuum porous media and pore-scale 

models using the commercially available code COMSOL.22  When the continuum option 
is used, velocities and longitudinal/transverse dispersivities for each layer are specified 
and COMSOL only solves the convection-dispersion equation.  Continuum simulations 
are not the focus of this research, but are used to illustrate spreading and mixing in 
layered media, as well as to explain the differences between echo and transmission tests. 

For pore-scale simulations, COMSOL uses finite-element methods to solve first 
for the steady-state single-phase velocities in each pore using the Navier-Stokes and 
continuity equations.  After velocities are calculated, solute concentrations are 
determined by solving the convection-diffusion equation in two or three-dimensions.    

Fluid mass balance is described using the continuity equation for steady-state 
incompressible flow:  

0v∇ ⋅ =               (1) 

where v is the pore velocity vector.  The simulations are at the pore scale in that grain 
boundaries are explicitly modeled as no-slip boundaries.  No-slip boundaries give zero 
velocity both normal and tangential to the grain surface.  For most simulations, we 
continuously injected solute at a constant velocity vinj.  At the injection boundary there 
are no grains so that the mean pore velocity must increase within the pores as grains are 
encountered.  Pore velocities can vary significantly over small distances depending on the 
size of the grains and pores.  The pressure at the outlet is constant at atmospheric 
pressure. 

 A momentum balance of the fluid is modeled using the incompressible Navier-
Stokes equation: 

2 ( )v v v v gP
t

ρ µ ρ ρ∂
− ∇ + ⋅∇ + ∇ − =

∂
0 .           (2) 

For steady-state flow where gravity is also negligible, the Navier-Stokes equation 
further reduces to  

2 ( )v v v Pµ ρ∇ = ⋅∇ + ∇  .            (3) 

Equation (3) is used in this research where the fluid density is taken to be 
constant, and therefore independent of concentration.    

The solution of Eqs. 1 and 3 give the pore velocities at each node of the finite 
element model.  Typically, we used 20,000 to 100,000 elements to reduce discretization 
errors to negligible levels.  Once pore velocities are determined, the solute concentrations 
are found by solving the time-dependent convection-diffusion equation:  

0( vC D C C
t

∂
+ ∇ ⋅ − ∇ + =

∂
) 0             (4) 

where DO is the diffusion coefficient of solute in the single-phase fluid and is 
generally taken to be .  We typically injected solute over the entire length of the 
pore-scale model, except as noted in the text.  The strength of the solute is set to C

9 210 /m s−

O at the 
injection boundary, while the initial solute concentration is zero within the pore-scale 
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model. Solute flow owing to both convection and diffusion is zero at the top and bottom 
of the model, as well as at all grain boundaries.  Zero diffusive flux is assumed at the 
outlet.   

From Eqs. 1- 4 and the specified boundary conditions, the solution concentrations 
for two-dimensional pore-scale simulations are functions of six dependent variables, and 
six parameters.  That is, 

( , , , , , ; , , , , , )x y inj P O OC f x y t v v P v D D Cµ ρ=  .                 (5) 
We can combine the parameters to form dimensionless groups.  For example, the 

dimensionless concentration is a function of six dimensionless variables and two 
dimensionless groups: 

( , , , , , ;Re, )D D D D Dx Dy D PeC f x y t v v P N=                   (6) 
where the dimensionless variables and parameter groups are defined as, 

2

; ; ;

; ; ;

Re ; .

inj
D D D D
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inj P inj P
Pe

O

v tC x yC x y t
C D D D

vv Pv v P
v v v

v D v D
N

D
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µ

= = = =

= = =

= =

;

   

The “pore” Peclet number (NPe) is the ratio of the time for diffusion to cross a 
distance of one-grain diameter to the time for convection to travel the same distance.  
Thus, large Peclet numbers imply a convection dominated process. 

The Reynolds number (Re) relates inertial forces to viscous forces.  Small 
Reynolds numbers occur in laminar flow, while turbulent flow occurs at relatively large 
values.  In general, Reynolds numbers are small in porous media and flow is laminar.   
Figure 2 for example shows flow around one circular grain for large and small Reynolds 
numbers.  The results show that all streamlines are reversible for small Reynolds number, 
but are irreversible for large Reynolds number where inertial effects are more important 
(see Fig. 3).  In this research, we only consider laminar flow so that streamlines are 
always reversible, regardless of the number of grains and their configuration.  Thus, for 
uniform packing of grains the dimensionless concentrations are only functions of one 
parameter group, the pore Peclet number.  We can still have irreversible dispersion even 
though streamlines are reversible.  
 
Results from Continuum Simulations 

In this section, we illustrate further the difference between convective spreading 
and mixing using continuum porous media simulations.   We consider a ten-layer porous 
media where the velocities in each layer are constant temporally, but vary in each layer.  
The velocities vary by a factor of 2.0, where the smallest velocities represent layers with 
lower permeabilities.  Table 1 gives the velocities for each layer, where the first layer 
corresponds to the bottom layer.  Dispersion coefficients are calculated using L LD vα= . 
For each layer, the transverse and longitudinal dispersivities are equal and constant at 
1.0E-4 m.  Thus, the dispersion coefficients in each layer vary by only a factor of 2.0.  
The dimensions of the 2D model is 1.0 m by 0.25 m.  We used 20,000 finite elements to 
reduce numerical dispersion to negligible levels.   
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Figure 4a shows the concentration profile at 0.3 PVI (pore volumes injected) for 
injection of a solvent slug of size 0.125 PVI. The injection well is at the left of the model 
and the production well to the right.  Figure 4b gives the transmission concentration 
histories for the local concentrations in layer 6 and the overall concentrations averaged 
over the cross section at x=0.3 m.  As shown, the local response is less mixed than the 
overall concentrations, which is similar to the illustration in Fig. 1 for transmission tests.  
The overall concentrations appear to be well mixed, although in this case there is very 
little mixing as is evident from the concentration profile (see Fig. 4a).  The overall 
concentration curves for Fig. 4b are clearly nonFickian.    

Figure 5a illustrates the same displacement except where the input physical 
dispersivities are larger by a factor of 100.  In this case, the local and overall 
concentration histories are nearly equal indicating that mixing is nearly complete over the 
transverse direction to flow.  This is clearly evident in the concentration profile of Fig. 
5a.  Thus, dispersion for this case is Fickian and the level of dispersion (mixing) has 
reached its asymptotic limit.   Once the asymptotic values are reached, dispersivities no 
longer increase with distance traveled.   

Concentration histories from echo tests performed by reversing the flow at 0.3 
PVI for the same ten-layer model of Figs. 4 and 5 are illustrated in Fig. 6.  As shown, the 
nonFickian features of the layered model in Fig. 4 are no longer present in the echo 
concentrations because flow reversal compensates for pore-level convective spreading in 
each layer.  Mixing from the overall concentration history, however, is greater than 
mixing for the local concentrations (taken at the inlet in layer 6).  The greater level of 
mixing for the overall concentrations is the result of additional mixing made possible by 
viscous and diffusive crossflow between the layers.  For both displacements in Figs. 4 
and 5, whether large or small mixing, echo tests give estimates of true mixing for the 
overall ten-layer model.  That is, no differentiation between convective spreading and 
true mixing is necessary with echo tests for these cases.   

Echo tests for a greater travel distance (larger PVI at reversal) than in Fig. 6 show 
even more mixing from the overall concentration history compared to the local 
concentration history.  This scale dependency results from more time and contact area 
available for crossflow between the layers when flow is reversed at 0.5 PVI instead of 0.3 
PVI.  We will show this same scale dependency using pore-scale simulations. 
 
Results From Pore-Scale Simulations 
We consider a variety of pore-scale simulations to demonstrate the scale dependence of 
dispersion.  

 
Homogeneous Models.  Consider first a homogeneous packing of spherical grains of 
size 0.02 mm as shown in Figure 7a.  Figure 7a shows the concentration profile in the 
pore space for continuous injection at about 0.4 PVI.  As shown, the level of mixing in 
this example is small, corresponding to a pore Peclet number of NPe = 3.   

The longitudinal dispersion coefficient for the displacement in Fig. 7a is 
calculated by matching the analytical convection-dispersion equation to the transmission 
concentrations at the production well (xD = 1).  That value along with those calculated 
using various levels of mixing are plotted in Figure 7b normalized by the diffusion 
coefficient.  As shown, the dispersion coefficient increases with the pore Peclet number.  
The ratio of DL/DO approaches the tortuosity coefficient for the pore-scale model at small 
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values of the Peclet number, where diffusion dominates.  At large values of the Peclet 
number, convection dominates and the increase in DL/DO with the Peclet number shows 
the conventional Perkins and Johnston23 response.   The slope, however, for this case is 
1.89 instead of the classical 1.1 – 1.3 value for well-packed porous media.24-26   

The difference in slope is likely the result of uniform grain distribution27 and the 
large porosity of 61% in our pore-scale model, as well as that flow is two-dimensional 
here. Jha28 showed that using an irregular grain distribution reduces the slope to about 
1.2.  The slope also decreases towards the classical range as the porosity is reduced by 
filling in the pore space of Fig. 7a by adding grains of smaller size (see Figs. 8 and 9).  
The Peclet number ranges from 0 to 500 for these values.  Fig. 10 shows that the slopes 
decrease further for larger Peclet numbers, as was also observed by Bijeljic and Blunt.29

The echo longitudinal dispersion for displacement of Fig. 7 was calculated by 
matching the reversed flow concentration at xD=0.  The calculated values using various 
levels of echo dispersion are compared with transmission dispersion and plotted in Figure 
11.  As shown, the echo dispersion has the same behavior as transmission dispersion in 
homogeneous uniform grain pack. 

Figure 12 shows that the ratio of DL/DO decreases linearly with increasing 
porosity.  This is the result of greater mixing in the pores owing to larger velocity 
fluctuations within the pore-scale model as porosity is reduced.  Mixing is also greater 
when the mean pore velocity is increased owing to greater variations in velocity within 
the pores as well.  When the mean pore velocity v is small, velocity variations within the 
pores are small, and mixing is primarily the result of diffusion.     

Next, we performed transmission tests by continuous injection of solute into the 
homogeneous and uniform pore-scale model shown in Fig. 13a.  The pore-Peclet number 
for this displacement is 20. We matched the longitudinal dispersivity from the 
transmission concentrations at various measured distances using the analytical CD 
solution.30-31 As shown in Fig. 13b, the calculated transmission dispersivity increases 
with mean distance traveled, but eventually approaches a constant value (asymptotic 
limit).   Figure 13b also shows the longitudinal dispersivities estimated from the echo 
tests, where flow was reversed after some mean travel distance into the pore-scale model.  
Thus, for echo tests, the travel distance out and back is plotted in Fig. 13b.  As shown, the 
echo dispersivities also show scale dependence, but are always equal or less than the 
transmission values.  Echo dispersivities do eventually approach the transmission 
dispersivities at the asymptotic limit.  The echo dispersivities are generally smaller than 
the transmission values because flow is reversed in echo tests, which eliminates 
convective spreading caused by variations in streamline paths.  The behavior at the pore-
scale is similar to what is observed for permeability variations (or streamline variations) 
at larger scales.8, 34  

Consider next the continuous injection of solute, but only in the lower 1/10th of 
the injection well.   The pore-scale model is still homogeneous with uniform grain size 
and packing as shown in Figure 14a.  As shown, the concentrations first move horizontal, 
but then must move around a grain in a decidedly vertical track.  This behavior continues 
as the solute moves into the pore-scale model.  The concentrations were then matched to 
the 2-D analytical convection-dispersion equation32-33 for a continuum porous media to 
obtain the “best fit” longitudinal and transverse dispersion coefficients, see analytical 
solution below.  Figure 14b shows that the transverse dispersion coefficient DT decreases 
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with distance traveled owing to the significant initial vertical movement around grains, 
whereas the longitudinal dispersion coefficient DL increases somewhat to its transmission 
asymptotic limit.    
 
Analytical Two-Dimensional CD Solution 

We used the following two-dimensional convection-dispersion equation to model 
both transverse and longitudinal dispersion coefficients in the pore-scale displacements of 
Figs. 14 and 15:   

2 2

2 2l t
C C CD D v C

x tx y
∂ ∂ ∂

+ − =
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∂  . 

The above equation assumes a continuum porous media and that the mean pore 
velocity in the vertical (y-direction) is zero, while the mean velocity in the horizontal (x-
direction) is constant (see Fig. A).  The initial and boundary conditions for the CD 
equation in an infinite porous media are   
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We assumed that the upper boundary of our pore-scale model was not felt during 

the displacement.  This is confirmed from the concentrations at that boundary.   
The analytical solution to the above model is given33 as 
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We used only half of the medium in the y-direction of our porous media because 
of symmetry.   

 
The ratio of DT/DL is exactly equal to the ratio of the dispersivities ( /Tα α ) for the 

pore-scale model when diffusion is neglected.   This result takes the pore-scale model as 
a continuum so that the mean pore velocity in the vertical direction is zero.  In Fig. 14b 
the ratio of /T Lα α  is between about 2.0 to 6.0 instead of the classical values between 0.01 
and 0.5 for well packed porous media.   The large dispersivity ratio is solely the result of 
large porosity, in this case around 61%. If the displacements are repeated for smaller 
porosity and nonuniform grain sizes, the transverse dispersion coefficient is less than the 
longitudinal value and the ratio is decreased by an order of magnitude to values between 
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0.1 and 0.5 (see Fig. 15).  This is the result of the smaller grains, which are now in the 
centers of the previously large pores of Fig. 14, blocking movement of the solute in the 
vertical direction.  

 
Series and Parallel Models.  In this section we demonstrate the scale 

dependence of dispersion that results from series and parallel layers in the pore-scale 
simulations.   Figure 16a shows a parallel model where two homogeneous and uniform 
grain packs of different sizes are placed on top of each other.  The pore-scale model is 
therefore doubled in height from the previous models.  The grain sizes differ by a factor 
of two in the parallel model, and in the series model.   

The results show that there is a large region where crossflow and diffusive mixing 
takes place between the layers (see Fig. 16a).  Figure 16b shows that the echo 
dispersivities with crossflow increase without bound.  When the layers are separate (no 
crossflow), the echo dispersivities are constant with distance traveled.  The echo 
dispersivities with crossflow do not reach an asymptotic limit in this case because the rate 
of increase in the length of the crossflow region with time is much faster than rate of 
diffusive transport of solute across the layers (the transverse dispersion number as 
defined by Lake and Hirasaki6 for this case is less than 0.2).  If this trend in echo 
dispersivities were to continue indefinitely, the dispersivity would be about 0.01 ft for a 
3-ft core.  Although extending this trend forward is speculative, it does indicate that the 
level of dispersivity calculated from the pore-scale simulations are consistent with those 
measured at the scale of laboratory cores.  If one would continue the extrapolation even 
further, the trend is below, but on the order of mixing estimated from single well tracer 
tests.9  More heterogeneous pore models that contain permeability variations at larger 
scales would give greater echo dispersivities.  

Figure 17 shows the concentration profiles for a pore-scale model with series 
layers or zones.  Mixing in the first zone proceeds as if the model were homogeneous.  
That is, the transmission dispersivities quickly reach an asymptotic limit for this case at 
about 0.0105 mm (see Fig. 18).  The pore velocities in that zone, however, increase prior 
to reaching the boundary of the next larger grain size zone.  This occurs because there is a 
large pore space immediately in front of the first zone, and the velocities respond to that 
(i.e. there is no distinct boundary here).  The transmission dispersivities, therefore, 
increase before reaching the second zone.  A similar, but opposite effect occurs between 
the second and third zone.  Once the solute is within the second zone, the transmission 
dispersivities increase to the larger asymptotic limit corresponding to the second layer 
(the second layer has a pore-Peclet number twice as large as the first layer).  The 
transmission dispersivities in the third zone, however, do not decrease rapidly to the 
asymptotic limit of the third zone, which is identical to the first zone.  That is, the effects 
of the middle layer are retained for a significant distance into the third zone.  

The echo dispersivities in the series model (Fig. 18) have similar trends as the 
transmission values, but they are sometimes greater than the transmission dispersivities.  
This is because the middle zone is traversed twice by the echo dispersivities when flow is 
reversed at mean distances greater than 12 mm.  Both the transmission and echo 
dispersivities in these cases represent true mixing, but over portions of the pore-scale 
model that were investigated. 
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Three-Dimensional Model.  Consider the homogeneous three-dimensional 
model given in Figs. 19 and 20.  Very few spherical grains are modeled because of the 
computational time required in the COMSOL simulations.  

We calculated the longitudinal dispersivity for the three-dimensional model by 
averaging the concentrations over a cross section. We compared those estimated 
dispersivities to the 2-D model shown in Fig. 19b where the injection velocity was kept 
the same. The 2-D model corresponds to the horizontal cross section through the 
midpoint of the 3-D model.  The transmission longitudinal dispersivities are somewhat 
greater in the 3-D model than in the 2-D model, likely the result of greater contact area 
between the solute and the uncontaminated fluid in 3-D.  Furthermore, breakthrough of 
solute occurs earlier in the 2D model owing to differences in porosity (75% in 3D and 
64% in 2D).   In general, we expect that mixing and dispersivities from 3-D flow should 
be greater than in 2-D owing to increased contact surface area. 
 
Conclusions 

A variety of pore-scale models to demonstrate that dispersivities (or dispersion) is 
scale dependent.  We also defined and explained the differences between convective 
spreading and mixing.  Our main conclusions are 
 
• Pore-scale simulations show similar features as those observed experimentally.  That 

is, the simulations demonstrate the classical Perkins-Johnston relationship between 
longitudinal dispersion and pore-Peclet number.  

• Our results confirm that single-well tracer tests (echo tests) are a more reliable 
measurement of the true level of mixing that occurs in a reservoir than interwell tracer 
tests (transmission).   

• Both echo and transmission dispersivities increase with distance traveled.  They may 
or may not reach an asymptotic limit depending on the heterogeneities encountered.  
The scale dependence results from an increase in the contact area between solute 
(gas) and resident fluid (oil) as heterogeneities are encountered, either at the pore 
scale or at the pattern scale.  Mixing is increased with increasing contact area because 
the effect of diffusion is enhanced.  That is, dispersivity increases as new scales of 
heterogeneity are encountered.    

• Convective spreading is not mixing, but can cause mixing by diffusion to be 
enhanced.  

• Transverse dispersivities are also scale dependent, but decrease with distance 
traveled.  The ratio of the transverse dispersivity to the longitudinal dispersivity 
becomes small as porosities are reduced in pore-scale models.   
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Analytical and Numerical Investigation of Heterogeneity--Figures 
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