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ABSTRACT  
 
 

We explore the use of efficient streamline-based simulation approaches for modeling 
and analysis partitioning interwell tracer tests in heterogeneous and fractured hydrocarbon 
reservoirs. We compare the streamline-based history matching techniques developed during 
the first two years of the project with the industry standard assisted history matching. We 
enhance the widely used assisted history matching in two important aspects that can 
significantly improve its efficiency and effectiveness. First, we utilize streamline-derived 
analytic sensitivities to relate the changes in reservoir properties to the production response. 
These sensitivities can be computed analytically and contain much more information than 
that used in the assisted history matching. Second, we utilize the sensitivities in an 
optimization procedure to determine the spatial distribution and magnitude of the changes in 
reservoir parameters needed to improve the history-match. By intervening at each iteration 
during the optimization process, we can retain control over the history matching process as in 
assisted history matching. This allows us to accept, reject, or modify changes during the 
automatic history matching process. We demonstrate the power of our method using two field 
examples with model sizes ranging from 105 to 106 grid blocks and with over one hundred 
wells. We have also extened the streamline-based production data integration technique to 
naturally fractured reservoirs using the dual porosity approach. The principal features of our 
method are the extension of streamline-derived analytic sensitivities to account for matrix-
fracture interactions and the use of our previously proposed generalized travel time inversion 
for history matching. Our proposed workflow has been demonstrated by using both a dual 
porosity streamline simulator and a commercial finite difference simulator. Our approach is 
computationally efficient and well suited for large scale field applications in naturally 
fractured reservoirs with changing field conditions. This considerably broadens the 
applicability of the streamline-based analysis of tracer data and field production history for 
characterization of heterogeneous and fractured reservoirs.  
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EXECUTIVE SUMMARY  
 

During the third year of the project, we compared the streamline-based history matching 
techniques developed during the first two years of the project with the industry standard 
assisted history matching. We enhance the widely used assisted history matching in two 
important aspects that can significantly improve its efficiency and effectiveness. First, we 
utilize streamline-derived analytic sensitivities to relate the changes in reservoir properties to 
the production response. These sensitivities can be computed analytically and contain much 
more information than that used in the assisted history matching. Second, we utilize the 
sensitivities in an optimization procedure to determine the spatial distribution and magnitude 
of the changes in reservoir parameters needed to improve the history-match. By intervening 
at each iteration during the optimization process, we can retain control over the history 
matching process as in assisted history matching. This allows us to accept, reject, or modify 
changes during the automatic history matching process. We demonstrate the power of our 
method using two field examples with model sizes ranging from 105 to 106 grid blocks and 
with over one hundred wells. The reservoir models include faults, aquifer support and several 
horizontal/high angle wells. History matching was performed using both assisted history 
matching and our previously proposed generalized travel time inversion, (GTTI). Whereas 
the general trends in permeability changes were similar for both the methods, the GTTI 
seemed to significantly improve the water cut history matching on a well-by-well basis 
within a few iterations. Our experience indicates that the GTTI can also be used very 
effectively to improve the quality of history match derived from the assisted history 
matching. The changes to the reservoir model from GTTI were found reasonable with no 
artificial discontinuities or apparent loss of geologic realism. Most importantly, history 
matching using GTTI took only few hours as compared to weeks or months by assisted 
history matching. 

We have also extened the streamline-based production data integration technique to 
naturally fractured reservoirs using the dual porosity approach. The principal features of our 
method are the extension of streamline-derived analytic sensitivities to account for matrix-
fracture interactions and the use of our previously proposed generalized travel time inversion 
for history matching. Our proposed workflow has been demonstrated by using both a dual 
porosity streamline simulator and a commercial finite difference simulator. Our approach is 
computationally efficient and well suited for large scale field applications in naturally 
fractured reservoirs with changing field conditions. The use of the generalized travel time 
concept enabled us to match both the breakthrough and amplitude of the reference response 
in one step. 

This report is divided into two major parts.  The first part describes the comparison 
between industry standard assisted history matching and our proposed streamline-based 
generalized travel time inversion. Two large field examples are presented to demonstrate the 
power and utility of our method compared to the current industry practice. The second part of 
the report generalizes our approach to naturally fractured reservoirs using the dual porosity 
streamline simulation. This considerably broadens the applicability of the streamline-based 
analysis of tracer data and field production history for characterization of heterogeneous and 
fractured reservoirs.  

 
The following papers were published based on the work from the third year of this research 
project. 
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September 26-29, 2004. 

 
• Al-Harbi, M., Cheng, H., He, Zhong and Datta-Gupta, A., “Streamline-based 

Production Data Integration in Naturally Fractured Reservoirs,” presented at the 
SPE Annual Technical Conference and Exhibition, Houston, TX, September 26-
29, 2004. Accepted for publication in SPE Journal (2005)  
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INTRODUCTION 
 
Reconciling high-resolution geologic models to production history is a very time-consuming 
aspect in reservoir modeling. Current industry practice still involves a tedious history-matching 
process that is highly subjective and often employs ad-hoc property multipliers. Recently 
streamline models have shown significant promise in improving the efficiency of history 
matching process. In particular, the streamline-based ‘assisted history-matching’ utilizes the 
streamline trajectories to identify and limit changes only to the regions contributing to the well 
production history. It is now a well-established procedure and has been applied successfully to 
numerous field cases. Over the past two years, we have developed a systematic procedure for 
history matching high resolution geologic models using streamline-based analytic sensitivities. 
In this phase of the work, we compare our approach with the industry standard ‘assisted’ history 
matching and also generalize its applicability to fractured systems. 
 
Field Experiences with Assisted and Automatic History Matching Using 
Streamline Models 
 

In this work, we enhance the streamline-based assisted history matching in two important 
aspects that can significantly improve its efficiency and effectiveness. First, we utilize 
streamline-derived analytic sensitivities to determine the spatial distribution and magnitude of 
the changes needed to improve the history match. Second, we use a ‘generalized travel time 
inversion (GTTI)’ for model updating via an iterative minimization procedure. Using this 
approach, we can account for the full coupling of the streamlines rather than changing individual 
or bundles of streamlines at a time. The approach is more akin to automatic history matching; 
however, by intervening at every step in the iterative model updating, we can retain control over 
the process as in assisted history matching. Our approach leads to significant savings in time and 
manpower during field-scale history matching. 

We demonstrate the power of our method using two field examples with model sizes ranging 
from 105 to 106 grid blocks and with over one hundred wells. The reservoir models include 
faults, aquifer support and several horizontal/high angle wells. History matching was performed 
using both assisted history matching and the GTTI. Whereas the general trends in permeability 
changes were similar for both the methods, the GTTI seemed to significantly improve the water 
cut history matching on a well-by-well basis within a few iterations. Our experience indicates 
that the GTTI can also be used very effectively to improve the quality of history match derived 
from the assisted history matching. The changes to the reservoir model from GTTI were found 
reasonable with no artificial discontinuities or apparent loss of geologic realism. 
 
Streamline-Based Production Data Integration in Naturally Fractured Reservoirs 
 
Streamline-based models have shown great potential in reconciling high resolution geologic 
models to production data. In this work we extend the streamline-based production data 
integration technique to naturally fractured reservoirs. Describing fluid transport in fractured 
reservoirs poses additional challenge arising from the matrix-fracture interactions. We use a 
dual-porosity streamline model for fracture flow simulation by treating the fracture and matrix as 
separate continua that are connected through a transfer function. Next, we analytically compute 
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the sensitivities that define the relationship between the reservoir properties and the production 
response in fractured reservoirs. The sensitivities are an integral part of our approach and can be 
evaluated very efficiently as 1-D integrals along streamlines. Finally, the production data 
integration is carried out via a generalized travel time inversion which has been shown to be 
robust because of its quasi-linear properties and utilizes established techniques from geophysical 
inverse theory.   

 We also apply the streamline-derived sensitivities in conjunction with a dual porosity 
finite difference simulator to combine the efficiency of the streamline approach with the 
versatility of the finite difference approach. This significantly broadens the applicability of the 
streamline-based approach in terms of incorporating compressibility effects and complex 
physics. We demonstrate the power and utility of our approach using 2-D and 3-D synthetic 
examples designed after actual field conditions. The reference fracture patterns are generated 
using a discrete fracture network (DFN) model that allows us to include statistical properties of 
fracture swarms, fracture densities and network geometries. The DFN is then converted to a 
continuum model with equivalent grid block permeabilities. Starting with prior models with 
varying degrees of fracture information, we match the water-cut history from the reference 
model. Both dual porosity streamline and finite difference simulators are used to model fluid 
flow in the fractured media. Our results indicate the effectiveness of our approach and the role of 
prior information and production data in reproducing fracture connectivities and preferential 
flow paths. 
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EXPERIMENTAL 
 
No experiments were performed during the second year of the project. 
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RESULTS AND DISCUSSION: PART I 
 

Field Experiences with Assisted and Automatic History Matching Using 
Streamline Models 
 
 
Introduction 
Geostatistical reservoir models are widely used to model the heterogeneity of reservoir 
petrophysical properties, such as permeability and porosity. These geostatistical reservoir models 
are usually upscaled from fine-scale geologic/geocellular models to coarser reservoir simulation 
models for field development studies and performance predictions. 

It is imperative that geostatistical reservoir models incorporate as much available, site-specific 
information as possible in order to reduce the uncertainty in the subsurface characterization. 
Available information on reservoir heterogeneity can be broadly categorized into two major 
types: static and dynamic. Static data are time-invariant direct or indirect measurements of 
reservoir properties, such as core measurements, well logs, and seismic data. These data can, 
relatively easily, be integrated into geostatistical models using the traditional geostatistical 
algorithms.1 Dynamic data are the time dependent measurements of flow responses that are 
related to the reservoir properties through the flow equations, such as pressure, flow rate, 
fractional flow rate, or saturation. Integration of dynamic data generally leads to an inverse 
problem and requires the solution of the flow equations several times using an iterative 
procedure.2-3 The process is generally referred to as “history matching” and is usually the most 
tedious and time-consuming aspect of a reservoir simulation study. 

Traditionally, history matching is performed manually on the upscaled reservoir model and 
frequently uses local or regional multipliers to reservoir properties. By adjusting the regions and 
multipliers, a history match could be achieved using mostly trial and error. The trial-and-error 
involves considerable subjective judgment and personal bias and most importantly may create 
artificial discontinuities inside the reservoir, potentially destroying the correlation built into the 
initial geologic model. 

A more systematic approach to history matching, called Assisted History Matching (AHM) 
uses streamlines to build upon and improve traditional history matching techniques.4-6 The AHM 
is also a manual approach. However, changes to the model can be limited to the streamlines 
contributing to the production history of the well of interest and the amount of changes can be 
computed using some simple semi-analytical methods. The approach is a significant 
improvement over the traditional manual history matching but still could be time consuming, 
particularly when there are a large number of wells. This is complicated by the coupled nature of 
the flow equations which makes matching individual wells difficult without impacting other 
wells also. Finally, if we limit changes along streamlines only, it can introduce ‘tube like’ 
artifacts into the geologic model. 

Geostatistically-based automatic history matching (production data integration) has been an 
active area of research and a number of techniques have been reported in the literature in the past 
decade. The main goal here is to match well production data by modifying the initial model in 
such a way that it preserves the underlying geostatistical features built into the initial model. 
Yeh7 and Wen et al.8 provided a review of these inverse techniques. Both finite difference and 
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streamline fluid flow modeling can be used in automated history matching.9 Typically, an 
inverse technique is needed for production data integration, and requires multiple solutions of the 
flow equations within a nonlinear optimization procedure.10-12 And this brings a hurdle to the 
practical applications. Streamline based inverse techniques have shown great potential in this 
regard13-18 and they only require a single solution of the flow equations per minimization 
iteration.13-14 The sensitivities of production data with respect to reservoir properties can be 
computed analytically using a single forward simulation. This renders substantial time-saving. 

Much of the ideas of AHM are actually embedded in the streamline-based sensitivity 
computations. The sensitivities define the relationship between reservoir properties and 
production response. Specifically, they quantify how, for example, the water-cut history at a well 
will change if we change permeability at any location in the reservoir model. Using the 
sensitivities, we can significantly speed-up the assisted history matching process and compute 
the amount of changes for reservoir properties through optimization. Instead of matching wells 
individually, we can handle the coupled problem directly and update the geologic model to 
match all the wells simultaneously. The approach is more akin to automatic history matching; 
however, by intervening at every step in the iterative model updating, we can retain control over 
the process as in assisted history matching. 

In this work we enhance the streamline-based assisted history matching in two important 
aspects that can significantly improve its efficiency and effectiveness. First, we utilize 
streamline-derived analytic sensitivities to determine the spatial distribution and magnitude of 
the changes needed to improve the history-match. These sensitivities are then incorporated into 
an optimization algorithm to update the reservoir model during flow simulation. Secondly, a 
“generalized travel-time inversion (GTTI)”19-20 is used for inverse modeling. The GTTI is robust 
because of its quasi-linear properties21 resulting in rapid convergence even if the prior model is 
far from the solution. We demonstrate our approach using two field examples with over 100 
wells and more than 30 years of production history.  

 

Background and Illustrative Examples 
Assisted History Matching. Assisted history matching utilizes unique information-content in 
streamlines in terms of injector-producer relationship to facilitate history matching.4-5 The main 
steps in assisted history matching are: (i) Flow simulation to generate production response. 
Either streamline or finite-difference simulators can be used for this purpose; (ii) Streamline 
generation based on the finite-difference velocity field. This step is not necessary for streamline 
simulators as streamlines are already available; (iii) Use of streamlines to assign grid blocks or 
regions to each producer; (iv) Computing the mismatch between the observed and computed 
production response at each well using streamlines; (v) Updating grid block or region properties 
manually to improve the history match on a well-by-well basis. The use of streamlines leads to 
simple and unambiguous changes in the model. Also, the changes are minimized to preserve the 
geology. An outline of the procedure of assisted history matching is given in a flow chart in Fig. 
1. 

Illustration of the Procedure. Fig. 2 shows a 2D reference permeability field (50×50 grid 
with cell size 10 feet × 10 feet) generated using Sequential Gaussian Simulation1 and the 
corresponding fractional-flow data at four producing wells in 5-spot pattern. The variogram of 
the reference field is spherical with range of 100 feet and 20 feet in the direction of 45 degree 
and 135 degree, respectively. We generated an initial model using the same geostatistical method 
with the same histogram and variogram as for the reference field. The initial permeability and the 
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water cut responses from the four corner wells are shown in Fig. 3. Note that this initial model 
visually is quite close to the reference model. The flow responses, however, are quite different 
from the reference model. Fig. 4 shows the streamlines for the initial model. Now in order to 
match the reference water cut, streamlines are used to help assigning cells to wells and grouping 
the cells. From streamlines, we know which cells to change to history match a particular well. 
Besides, we know which streamlines contribute to early breakthrough (A), middle stage (B), and 
later stage (C) water cut. Streamline helps grouping cells that need to be modified. We can 
change cells covered by streamlines marked ‘A’ to match early breakthrough, and change those 
associated with ‘B’ and ‘C’ to match middle and later stage water cut. 

The assisted history matching can accelerate the history matching process significantly. 
However, the approach is still more or less manual and requires some trial and error. Individual 
well matching can sometimes deteriorate matches in other wells because of the coupled nature of 
the flow field. Finally, limiting the changes to streamlines can introduce artifacts in the geologic 
model unless the changes are kept to a minimum. Recently, a number of approaches have been 
reported to improve the efficiency of the AHM method. These include the use of tracer-like flow 
assumption to compute the modifications of reservoir properties within the well regions 
delineated by streamlines that can match multiple phase production history,17,22 and the 
integration of streamline information at different levels with geostatistics.16,23 These approaches, 
however, do not directly use the sensitivity coefficients derived from the streamline simulation to 
quantify the changes. Therefore, the improvement in efficiency is marginal at best. 

 
Streamline-Based Automatic History Matching. This approach utilizes streamline-derived 
sensitivities to update geologic models.9,13,14,20 The major steps are: (i) Streamline-based flow 
simulation to compute production response at the wells; (ii) Quantification of the mismatch 
between observed and computed production response; (iii) Streamline-based analytic sensitivity 
computation of the production response with respect to reservoir parameters; (iv) Updating 
reservoir properties to match the production history via inverse modeling using streamline-
derived sensitivities. An outline of the procedure of streamline-based automatic history matching 
is given in a flow chart in Fig. 5.  

Illustration of the Procedure. To illustrate the procedure, we use the same synthetic example 
used for assisted history matching. We have used a commercial 3D streamline simulator, 
FrontSim33 (Version 2003a), for modeling two-phase flow in the reservoir. Production data 
misfit is represented by a ‘generalized travel time’ at each producing well. A “generalized travel 
time” or “travel-time shift” is computed by systematically shifting the computed production 
response towards the observed data until the cross-correlation between the two curves is 
maximized.19-20 This is illustrated in Fig. 6 and is discussed further later. The sensitivities 
calculated for automatic history matching are shown in Fig. 7. These sensitivities are calculated 
along the streamlines analytically using time of flight and fractional flow information. Unlike 
assisted history matching, there is no need for manual intervention to look at the streamlines to 
determine where to change the models. Also, with the sensitivity information, we can apply 
different modifications determined from optimization to different locations. Figs. 7d and 7e 
show that sensitivities are calculated along the streamlines. The largest sensitivities in magnitude 
(dark-blue region) correspond to early breakthrough, and the medium (light-blue to green) and 
small (yellow) sensitivities correspond to middle stage and later stage water cut. Also the whole 
region covered by the sensitivities will be changed systematically and automatically by 
generalized travel-time inversion. Fig. 8 shows that the water-cut responses are in good 
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agreement with the reference, and the updated permeability model maintains the general features 
of the initial model. As desired, the permeability was increased around Well 2 while decreased 
around Well 3 to match the history (Fig. 9, also refer to Fig. 3 for the initial model). The 
decrease of objective function (shift time) with the iteration number, as well as the associated 
water-cut misfit, is shown in Fig. 10. The shift time objective function reduces from 670 days to 
20 days in 20 iterations, and it reduces quickly in the first few iterations.  

Multiple realizations. An important advantage of the streamline-based inversion is its 
computational efficiency. This makes dynamic conditioning of multimillion-cell models feasible 
using the streamline approach. In addition, we are able to generate multiple realizations to assess 
uncertainty in performance forecasting, for example, using the randomized maximum likelihood 
method.24 Using multiple realizations and an ensemble average map, we can also reveal large-
scale spatial trends common to all realizations. To illustrate this, we generated 100 initial models 
and history matched all of them to the reference production data in 4 wells using the streamline-
based inversion. Initial realizations are generated by unconditional Gaussian simulation with the 
same histogram and variogram as for the reference field.  

The water-cut responses from all initial and updated realizations are shown in Figs. 11 and 12. 
Clearly, after inversion, the calculated water-cut responses all moved much closer to the 
reference responses (Fig. 12). Note that in the randomized maximum likelihood method we 
match “realizations” of the observed production history rather than the history itself; hence, we 
see the spread in the water-cut responses in the updated models. For 100 realizations, it took only 
150 minutes in a PC (Intel Xeon 3.06 GHz processor). The mean and variance of the 100 
realizations is shown in Fig. 13. The final ensemble mean field captured most of the low 
permeability region and some of the high permeability region (Fig. 13a), while the variance field 
(Fig. 13b) displays the uncertainty among the updated models. 
 
Streamline-Based Automatic History Matching: Mathematical Formulation 
Several previous publications describe streamline-based sensitivity computations and generalized 
travel time inversion.9,13-14,18-20 In this section, we briefly outline the mathematical background 
behind the approach. 
 
Forward Modeling: Streamline Simulation. Streamline simulators approximate 3D fluid flow 
calculations by a sum of 1D calculations along streamlines. The choice of streamline direction 
for 1D calculations makes the approach extremely effective for modeling convection-dominated 
flows in the reservoir.27 This is typically the case when heterogeneity is the predominant factor 
controlling oil recovery, for example in waterflooding. The streamline approach for modeling 
multidimensional, multiphase flow basically comprises of five major steps:26-29 (i) Tracing 
streamlines in 3D based on a numerical solution of the pressure and velocity equations; (ii) 
Recasting the transport (saturation) equations in terms of streamline time of flight which is the 
travel time of a tracer along the streamline; (iii) Solution of the saturation equation along 
streamlines; (iv) Periodic updating of streamlines to account for changing field conditions such 
as infill drilling and rate changes; (v) Use of operator splitting to account for transverse fluxes 
such as gravity. 

The computational advantage of the streamline methods can be attributed to four principal 
reasons: (i) Streamlines may need to be updated only infrequently; (ii) The transport equations 
along streamlines can often be solved analytically; (iii) The 1D numerical solutions along 
streamlines are not constrained by the underlying grid stability criteria, thus allowing for larger 
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timesteps; (iv) For displacements dominated by heterogeneity, the CPU time often scales nearly 
linearly with the number of gridblocks, making it the preferred method for fine-scale geologic 
simulations. Furthermore, the self-similarity of the solution along streamlines may allow us to 
compute the solution only once and map it to the time of interest. Other advantages are sub-grid 
resolution and reduced numerical artifacts such as artificial diffusion and grid orientation effects, 
since the streamline grid used to solve the transport equations is effectively decoupled from the 
underlying static grid. 
 
Generalized Travel Time and Sensitivity Calculations. As shown in Fig. 6, we define the 
generalized travel time as the optimal time shift t~∆  that maximizes the following correlation 
function: 
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where y is the flow responses we wish to match, e.g., water cut at producing wells, j is producer 
index and i is observation data index. The overall production data misfit can now be expressed in 
terms of a generalized travel-time misfit at all wells as ( )∑
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of producing wells. Our objective is to minimize this generalized travel time misfit, and we need 
the sensitivities for minimization. 

Sensitivity Computations. In GTTI, we shift the entire fractional flow curve by a constant 
time. Thus, every data point in the fractional-flow curve has the same shift time, 

ttt ~
21 ∆=== Lδδ  (Fig. 6). So we can sum up and average the travel time sensitivities of all data 

points to obtain a rather simple expression for the sensitivity of the generalized travel time with 
respect to reservoir parameters m as follows20 
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It now reduces to the sensitivity of the arrival times at the producing well, mt ji ∂∂ /,
. These 

sensitivities can be easily obtained in terms of the sensitivities of the streamline time of flight,20 
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In the above expression, the fractional-flow derivatives are computed at the saturation of the 
outlet node of the streamline. The time-of-flight sensitivities can be obtained analytically in 
terms of simple integrals along streamline. For example, the time-of-flight sensitivity with 
respect to permeability will be given by13 
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where the integrals are evaluated along the streamline trajectory, and the ‘slowness’ which is the 
reciprocal of interstitial velocity, is given by 
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Note that the quantities in the sensitivity expressions are either contained in the initial reservoir 
model or are available after the forward simulation run.  

 
Data Integration. Our goal is to reconcile high-resolution geologic models to field production 
history. This typically involves the solution of an underdetermined inverse problem. The 
mathematical formulation behind such streamline-based inverse problems has been discussed 
elsewhere.13,28 Both the deterministic and stochastic approaches have been used with equal 
success.30 In the deterministic approach pursued here, we start with a prior static model that 
already incorporates geologic, well log, and seismic data. We then minimize a penalized misfit 
function consisting of the following three terms, 
 mLmmGt∆ δβδβδ 21

~ ++− . ......................(6) 
In Eq. 6, t∆~ is the vector of generalized travel-time shift at the wells; G is the sensitivity 

matrix containing the sensitivities of the generalized travel time with respect to the reservoir 
parameters. Also, mδ correspond to the change in the reservoir property and L is a second spatial 
difference operator that is a measure of roughness and is analogous to imposing a prior 
variogram or covariance constraint. The first term ensures that the difference between the 
observed and calculated production response is minimized. The second term, called a ‘norm 
constraint’, penalizes deviations from the initial model. This helps preserve geologic realism 
because our initial or prior model already incorporates available geologic and static information 
related to the reservoir. Finally, the third term, a roughness penalty, simply recognizes the fact 
that production data are an integrated response and are thus, best suited to resolve large-scale 
structures rather than small-scale property variations. The minimum in Eq. 6 can be obtained by 
an iterative least-squares solution to the augmented linear system 
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The weights β1 and β2 determine the relative strengths of the prior model and the roughness 
term. In general, the inversion results will be sensitive to the choice of these weights. 

When the data and the prior model statistics are specified, for example, the data errors and 
model parameter covariance (variogram), we can adopt a Bayesian formulation that leads to the 
minimization of the following function,  

( ) ( ) [ ] [ ]t∆t∆ ~~
2
1

2
1 11 −− +−− D

T
pM

T
p CmmCmm . .............(8) 

The minimum in Eq. 8 can be obtained by an iterative least-squares solution to the linear 
system30 
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where CD and CM are the data error covariance and the prior model parameter covariance 
respectively, and mp is the prior term. Eq. 9 represents a system of equations that is analogous to 
the deterministic formulation in Eq. 7. We use an iterative sparse matrix solver, LSQR, for 
solving these augmented linear systems in Eqs. 7 and 9. The LSQR algorithm is well suited for 
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highly ill-conditioned systems and has been widely used for large-scale tomographic problems in 
seismology.31 

It is important to realize that automatic history matching does not necessarily imply that the 
user has to lose control over the process. Instead, it is recommended that the user intervene after 
every iteration of the process to determine the plausibility of the changes and accept or reject or 
modify the changes. From this point of view, the only difference from assisted history matching 
is the use of the sensitivities and the non-linear optimization technique to determine the spatial 
location and the extent of changes to the prior model.  
 
Field Examples 
We now discuss applications of streamline-based assisted and automatic history matching to two 
field examples. We illustrate the use of automatic history matching both for conditioning static 
geologic models to production data and also as a “finisher/post-processor” to assisted history 
matching to further improve the matches. 
 

Field Example 1. The first model we studied is a cutout section from a large sandstone reservoir 
containing over 1.5 MMMSTB of oil.5 The reservoir is characterized by three principal 
depositional settings, incised channel fill, regional marine shale, and tidal delta complex. The 
sector we considered has an average porosity of 20% (Fig. 14) with median permeability of 
about 1000 md. The grid dimensions are 30×46×39 (53,820 cells). The model has two faults, an 
aquifer, and four different relative permeability zones. The oil is a 36º API gravity oil with a 
viscosity of 0.3 cp at reservoir conditions. The field has been produced for approximately 50 
years by primary depletion and phased waterflooding. The simulation model starts at Year 1965 
and ends at Year 2001. Recovery to Year 2001 is approximately 35% OOIP with a field-wide 
water cut of approximately 93%. Altogether there are 130 wells in the simulation and history 
matching process. Only water-cut history was used to update the permeability model.  

For automatic history matching, we will use two different starting models. In the first case, 
the initial model is up-scaled directly from the static fine-scale geostatistical model using flow-
based upscaling method. 32 This initial model was used in both assisted and automatic history 
matching. In the second case, the initial model is the updated permeability model after assisted 
history matching.5 Our goal in this second case is to use automatic history matching to further 
improve the results of assisted history matching. 

We choose horizontal permeability as our model parameter in the inversion. Vertical 
permeability is also changed during the inversion by preserving the ratio of horizontal and 
vertical permeability. Porosity in the model was not altered because its variation was relatively 
minor compared to permeability.  

Assisted vs. Automatic History Matching. Fig. 15 shows the field-wide water-cut 
performance for the initial geologic model, the updated model by automatic history matching, as 
well as the result from assisted history matching. We can see that the initial model shows large 
deviations from the field production history. The results from automatic history matching exhibit 
significant improvement in the water-cut match. For this case, the matches from the automatic 
history matching appear to be better than that of assisted history matching, particularly in the 
early period. 

The water-cut match for a few typical wells from amongst the 130 wells is given in Fig. 16. 
For validation purposes, we matched only part of the history data for some wells and used the 
updated model to predict the production performance for the rest of the period. For example, for 
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Well 128 we matched the data only to Year 1989. Clearly, the prediction for the rest of time 
period shows marked improvement compared to the initial model. The permeability models 
before and after automatic history matching are shown in Fig. 17. The inverted model has 
increased heterogeneity by increasing the permeability contrast and variance. In some areas, the 
permeabilities are increased and in other areas decreased. Overall, the final updated model by 
automatic history matching preserved most of the prior geologic features while improving the 
history match.  

It should be noted that production data smoothing is an important step during generalized 
travel-time inversion with field data. The field production history data are frequently erratic with 
numerous fluctuations. Very often, the time step sizes used in the streamline simulation are 
larger than the intervals of observed data. Thus, the short-term fluctuations in the production data 
are not captured by simulation. We averaged the production data before inversion over pre-
specified interval using the simulation time steps as guidelines. This helps the inversion to 
capture the general trend of the production history and not to be trapped by small details. Data 
smoothing also facilitates the calculation of the shift time during generalized travel-time 
calculations. 

As mentioned before, the automatic history matching using streamline-derived sensitivities is 
very computationally efficient. For this case, it took about 5 hours for IBM Regatta workstation 
for 8 inversion iterations and less than one week, including the setup time, for the entire history 
match. Assisted history matching for the same field case will generally take much longer, of the 
order of a few months depending upon the experience level of the user. 

Automatic History Matching as ‘Post Processor’ to Assisted History Matching. Here we 
utilize automatic history matching to further improve upon the geologic model derived from 
assisted history matching. The field-wide water-cut match after assisted history matching is 
already quite close to the history data (Fig. 18). After automatic history matching, it is further 
improved, particularly in the early time (see the enlarged figure of early time section on the right 
of Fig. 18). 

For individual well-by-well water-cut matches, most wells show further significant 
improvement over assisted history matching (see Fig. 19 for some typical wells from 130 wells). 
For example, the water cuts in some wells (e.g., Wells 50, 67) are shifted right to match the 
history, while some are shifted left (e.g., Wells 12, 89, 99) to match the history. The most 
significant improvement is observed for Well 99. For very few wells (3 wells), the water cut in 
the updated model is slightly worse than the initial model. After eight iterations, the objective 
function was reduced by half, and the water-cut misfit was reduced by 20 to 30 percent. Each 
inversion iteration consists of one forward (FrontSim33) simulation (about 30 minutes) and one 
LSQR solution (about 8 minutes). The entire history match process took about 5 hours for eight 
iterations in IBM Regatta workstation 

Fig. 20 shows the permeability models before and after automatic history matching. From a 
visual inspection we see that most of the features in the initial model are preserved in the updated 
model. However, comparing on a layer-by-layer basis, we can find some detailed changes in the 
model. We show a number of layers where the main changes occur. Fig. 21 shows the 
permeability histogram for four different cases: (i) the initial static geologic model, (ii) the 
updated model via automatic history matching starting from the initial geologic model, (iii) the 
updated model via assisted history matching starting from the initial geologic model, and (iv) the 
updated model via automatic history matching starting from assisted history-matched model. We 
can see that the automatic history matching leads to a similar permeability statistics regardless of 
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whether we started from the initial model or the updated model after assisted history matching. 
We can see that the low permeability at the initial geological model have been removed, 
indicating the need to increase permeability at the low permeability regions to match the 
production data. Interestingly, the histograms of the permeability models from assisted history 
matching and automatic history matching show very similar features. This further demonstrates 
that the similarity in principle between the streamline-based assisted and automatic history 
matching. 
 
Field Example 2. This second example is a geologically complex sandstone reservoir consisting 
of several different facies. The reservoir lies between an underlying shale and an overlying 
shallow marine shale-siltstone. The reservoir itself is a structural trap (Fig. 22). The erratic 
distribution of sandstones and intervening shales indicate that the depositional environment was 
transitional and most likely associated with or part of a deltaic environment. 

The simulation model has 156 wells, 200×65×40 grid blocks (520,000 cells), and 28 years of 
production history.5 Among the 156 wells, 83 producers which had significant water-cut 
response were used for production data integration purpose. There are inactive cells in the model, 
and aquifer support was modeled by large porosity values along the periphery. Five different 
relative permeability zones are used. The reservoir was under primary depletion for an extended 
period of time, followed by peripheral water-injection. The water-cut responses from the initial 
permeability model significantly deviate from the history. After 10 iterations by automatic 
history matching, most of the wells exhibit a much better history match. Some typical wells are 
shown in Fig. 23. After inversion, both shift-time misfit and water-cut misfit were reduced by 
about half (Fig. 24).  

Fig. 25 compares the permeability before and after the history match. For most of the 40 
layers, the changes are hard to discern by visual comparison (Fig. 25c). This is primarily because 
the streamline-based sensitivities help target the changes to regions of maximum impact. 
Although some layers show obvious change, the general trend of the static geologic model is 
retained. We can see that in some areas, permeabilities are reduced (e.g., Fig. 25a), while for 
some regions, permeabilities are increased (e.g., Fig. 25b). We also observed that some high 
permeability channels are created (e.g., Figs. 25b,d), while some low permeability barriers are 
formed (e.g., Fig. 25d). It is reasonable for automatic history matching to form high permeability 
channel and low permeability barrier for a deltaic depositional environment. Also from the 
histogram comparison (Fig. 26), we can see that the heterogeneity is increased in the updated 
model. This is reasonable considering the erratic distribution of sandstones and intervening 
shales and the depositional environment. Both the low values and the high values are further 
extended, and the artifacts from high permeability cut-off in the initial model seem to have 
disappeared in the updated model. For this example, it took about 17 hours for IBM Regatta 
workstation with 10 inversion iterations and less than one week including the setup time for the 
entire history matching process. 
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Fig. 1 − Flowchart for assisted history matching. 
 
 
 
 
 
 

            
 
Fig. 2 − Reference permeability field and water cut responses.                       Fig. 3 − Initial permeability field and water cut 
responses. 
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Fig. 4 − Illustration of streamline-based assisted history matching water-cut response. 
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Fig. 5 − Flowchart for automatic history matching. 
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Fig. 6 − Illustration of generalized travel time misfit, correlation function, and generalized travel time sensitivity calculation. 
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Fig. 7 − Generalized travel time sensitivities for (a) Well 1, (b) Well 2, (c) Well 3, (d) Well 4, and (e) streamlines associated 
with Well 4. 
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Fig. 8 − Updated permeability field and water cut matches.            Fig. 9 − Permeability changes.    Fig. 10 − Misfit reduction. 
 
 
 

         
Fig. 11 − Water cuts of four producers from 100 initial realizations together with the results from the reference field (blue 
squares). 
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Fig. 12 − Water cuts of four producers from 100 updated realizations together with the results from the reference field (blue 
squares). 
 
 
 
 

                           
                                                         a                                                                                                    b 
 

Fig. 13 − (a) Ensemble mean of the 100 final estimated permeability fields and (b) uncertainty in terms of the variance. 
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Fig. 14 − Porosity distribution and well locations for BBCK 
model. 

Fig. 15 − Field-wide water-cut performance for BBCK model. Orange-
square is the history, green-diamond is static geologic model result, 
red-circle is assisted history matching result, and blue-plus is the 
final result by automatic history matching. 



23 

 History Geologic model Assisted HM Automatic HM
 

Well 12

0

1

1965 1975 1985 1995 Year

W
at

er
-c

ut

Well 32

0

1

1965 1975 1985 1995 Year

W
at

er
-c

ut

Well 50

0

1

1965 1975 1985 1995 Year

W
at

er
-c

ut

Well 67

0

1

1965 1975 1985 1995 Year

W
at

er
-c

ut

Well 89

0

1

1965 1975 1985 1995 Year

W
at

er
-c

ut

Well 99

0

1

1965 1975 1985 1995 Year

W
at

er
-c

ut

Well 102

0

1

1965 1975 1985 1995 Year

W
at

er
-c

ut

Well 111

0

1

1965 1975 1985 1995 Year

W
at

er
-c

ut

Well 128

0

1

1965 1975 1985 1995 Year
W

at
er

-c
ut

 
Fig. 16 − Comparison of water cut match by automatic and assisted history matching. ‘Diamond’ is history, ‘red dotted line’ 
is initial static geologic model result, ‘green line’ is assisted history matching result, and ‘black bold line’ is final result by 
automatic history matching. For some wells we matched only part of the data and did prediction for the rest of the 
production time using the updated model to further validate the model. For example, we matched the data only to Year 
1989 for Well 128 (before the black vertical line), and the prediction for the rest of time improved a lot compared to the 
initial model. 

 

                   
                        

               (a) Overall model                                                                (b) Layer 3, decreased permeability 
 
 

   
 

     
            (c) Layer 14, increased contrast and heterogeneity                              (d) Layer 21, increased permeability 

1                1 0             1 0 0              1 0 0 0             1 0 0 0 01                1 0             1 0 0              1 0 0 0             1 0 0 0 0  
Fig. 17 − Horizontal permeability distribution of initial static geologic model (left side of each group) and the final inverted 
model by automatic history matching starting from the initial static model. 
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Fig. 18 − Field-wide water-cut performancefor Example 1. Orange-square is history, red-circle is assisted history matching 
result, and blue-plus is the final automatic history matching result. 
 
 

Well 12

0

1

1965 1975 1985 1995 Year

W
at

er
-c

ut

Well 32

0

1

1965 1975 1985 1995 Year

W
at

er
-c

ut

Well 50

0

1

1965 1975 1985 1995 Year
W

at
er

-c
ut

Well 67

0

1

1965 1975 1985 1995 Year

W
at

er
-c

ut

Well 89

0

1

1965 1975 1985 1995 Year

W
at

er
-c

ut

Well 99

0

1

1965 1975 1985 1995 Year

W
at

er
-c

ut

Well 102

0

1

1965 1975 1985 1995 Year

W
at

er
-c

ut

Well 111

0

1

1965 1975 1985 1995 Year

W
at

er
-c

ut

History

Assisted HM

Automatic HM

 
Fig. 19 − Automatic history matching improved water-cut match upon assisted history matching for most of 130 wells. 
Eight typical wells are shown. ‘Diamond’ is history, ‘green line’ is assisted-history-matching result, and ‘black bold line’ is 
final result by automatic history matching. 
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                      (a) Overall model                                                      (b) Layer 3, little change, most of the layers have little change 

           
                     (c) Layer 8, increased contrast                     (d) Layer 13, increased permeability along fault (also in Layer 11-22)  
 

    
                     (e) Layer 14, increased permeability                                            (f) Layer 34, decreased permeability 
 

1                1 0             1 0 0              1 0 0 0             1 0 0 0 01                1 0             1 0 0              1 0 0 0             1 0 0 0 0  
 
Fig. 20 − Horizontal permeability distribution for assisted history matched model (left side of each group) and automatic 
history matched model starting from the assisted history matched model for Example 1. 
 
 

 
                               a                                                     b                                                    c                                              d 
 
Fig. 21 − Horizontal permeability histogram for (a)static geologic model, (b) final inverted model starting from static model, 
(c)assisted history matched model, and (d) final inverted model starting from assisted history matched model. 
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Fig. 22 − Initial static geologic model forExample 2. Dark blue is for inactive regions. Aquifer support was modeled by large 
porosity values at the periphery. The reservoir itself is a structural trap. 
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Fig. 23 − Water cut match by automatic history matching for 20 typical wells among 83 wells for Example 2. ‘Diamond’ is 
history, ‘red dotted line’ is initial static geologic model result, and ‘black solid line’ is final result by automatic history 
matching. 
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Fig. 24 − Water cut and shift time misfit reduction for Example 2 by automatic history matching. 
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Fig. 25 − Horizontal permeability distribution before (left side of each group) and after automatic history matching for 
Example 2. 
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Fig. 26 − Horizontal permeability histogram before and after automatic history matching for Example 2. 
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RESULTS AND DISCUSSION: PART II 
 
Streamline-Based Production Data Integration in Naturally Fractured 
Reservoirs 
 
Introduction 
Natural fractures are known to play a significant role in subsurface flow and transport of fluids. 
In recent years, advances in key technologies such as seismic imaging and horizontal drilling 
revealed the true extent of fractures in many reservoirs and enabled operators to utilize novel 
ways to use fracture connectivity to enhance recovery. The number of reservoirs that are now 
considered to be naturally fractured has also risen significantly in recent years and there is a 
greater need for more robust fracture characterization methods that can integrate both static and 
dynamic data in an efficient manner.1  

Of late, discrete fracture network (DFN) techniques have gained increasing attention in the oil 
industry.2,3  The DFN is based on mapping fracture planes in 3D space using statistical properties 
of fracture swarms, fracture network geometry and flow characteristics. The advantage of the 
DFN models is the ability to incorporate complex fracture patterns based on field data such as 
cores, well logs, borehole images, seismic data and geomechanics. Although the DFN models 
can reproduce very realistic fracture geometry, it is important to condition these models to 
dynamic data such as well test, tracer and production data to reproduce the flow behavior in the 
reservoir. Such conditioning is particularly important for fractured reservoirs because only a 
small fraction of the fractures in the DFN model might carry bulk of the fluid flow.4,5  

Streamline models have shown great potential in integrating dynamic data into high resolution 
geologic models.6-10 A unique feature of streamline models has been the ability to efficiently 
compute the sensitivity of the production data to reservoir parameters such as porosity and 
permeability. These sensitivities are partial derivatives that quantify how the production response 
will be affected by changes in reservoir properties. Integrating dynamic data into reservoir 
models typically involve the solution of an inverse problem and the sensitivities play a key role 
here. In our previous works, we have utilized the streamline-based sensitivities in conjunction 
with a generalized travel time inversion method to efficiently integrate production data into 
geologic models.7 Our approach has been successfully applied to a large number of field cases 
including a giant middle-eastern carbonate reservoir.8 

Until recently, streamline models have been limited to single porosity systems and thus, were 
not suitable for modeling fluid flow in fractured reservoirs, particularly accounting for matrix-
fracture interactions. A common way to model fluid flow in fractured reservoirs is through the 
dual media approach whereby the fracture and the matrix are treated as separate continua that are 
connected through a transfer function.11-13 The transfer functions that describe the exchange of 
fluids between the matrix and the fracture system can be easily implemented within the 
framework of the current single porosity streamline models.14,15  This allows us to utilize much 
of the techniques related to production data integration developed for single porosity streamline 
models. However, compared to the single porosity systems, the propagation of the saturation 
front in the fracture is retarded significantly because of the exchange of fluid with the matrix in 
dual porosity systems. These effects must be accounted for while computing the travel time 
sensitivities for saturation fronts. The streamline-derived sensitivities can also be applied in 
conjunction with dual porosity finite difference simulators and allow us to combine the 
efficiency of the streamline approach with the versatility of finite difference simulation. The 
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streamlines can be obtained from the fluid fluxes that are readily available during finite-
difference simulation. This significantly broadens the applicability of the streamline-based 
approach in terms of incorporating compressibility effects and complex physics.16  

The organization of this report is as follows.  First we outline the major steps in our proposed 
approach and illustrate the procedure using a 2-D synthetic example. Next, we briefly describe 
the streamline-based dual porosity simulation and how to include matrix-fracture transfer 
mechanisms within the framework of single porosity streamline simulation. We then describe the 
extension of streamline-based sensitivity computations to fractured reservoirs and production 
data integration via generalized travel time inversion. Finally, we demonstrate the power and 
utility of our method using a realistic 3-D example whereby we use a finite-difference dual 
porosity simulator and streamline-derived sensitivities to integrate over 20 years of water-cut 
history. 
 
Approach 
Our approach for integrating dynamic data in fractured reservoirs is based on a previously 
proposed generalized travel time inversion for production data integration.17 The approach has 
been shown to be computationally efficient, robust and suitable for large-scale field 
applications.7,18 The unique aspect here is the extension and validation of streamline-based 
analytic travel time sensitivity computations for fractured medium and accounting for matrix-
fracture exchange mechanisms. The travel time sensitivities can be applied to both streamline 
and finite difference simulators. Thus, we can exploit the computational efficiency of the 
streamline approach and the versatility of the finite difference simulators in terms of handling 
compressibility and complex physics. The main steps used in our approach are as follows. 

 
• Dual Porosity Fracture Flow Simulation. For modeling fluid flow in fractured reservoirs, 

we can use either a 3D dual porosity streamline simulator or a finite difference simulator. 
The streamline models have recently been extended to fractured reservoirs using the dual 
media approach.14,15 In particular, the dual porosity streamline models can be considerably 
faster than conventional finite-difference simulators when the primary exchange mechanism 
between the matrix and the fracture system is capillary imbibition.  However, in the presence 
of strong coupling between the matrix and the fracture system, the streamline models may 
not offer significant advantage and we revert to conventional finite difference dual porosity 
flow simulation. The use of finite-difference models allows us to incorporate compressibility 
and other relevant physical mechanisms without any significant loss in computational 
efficiency. 

 
• Generalized Travel-Time and Sensitivity Computations. The misfit between the observed 

and computed production response is quantified using a previously proposed generalized 
travel time.7,17 A critical aspect of production data integration is calculation of sensitivities 
that define the relationship between production response and reservoir parameters. We 
compute these sensitivities analytically as one-dimensional integrals along streamline 
trajectories. For streamline simulators, these trajectories are readily available. However, for 
finite difference models an additional step is necessary to compute the streamlines and time 
of flight based on the finite difference velocity field. These one dimensional calculations 
scale very favorably with respect to number of grid blocks. Thus, our approach is particularly 
well-suited for high resolution geologic models. 
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• Data Integration Using Generalized Travel Time Inversion. For history matching, we 
have used a generalized travel time inversion approach that utilizes the analytical sensitivities 
is used in conjunction with an iterative optimization scheme to minimize the travel time shift 
between calculated and observed data.17 Additional constraints are imposed to integrate prior 
information and also retain plausibility of the solution. These include a prior covariance 
model or equivalently a ‘roughness’ constraint to preserve the spatial correlation of the 
fracture permeability and a ‘norm’ constraint to retain the prior geologic features.17 The 
generalized travel time inversion has many favorable characteristics including quasi-linear 
properties that make it attractive for field applications.7,15 

 
An Illustration of the Procedure. To illustrate our approach, we will use an example that 
involves integration of water cut data in a 9-spot pattern. The reference fracture permeability 
field was derived from a discrete fracture network (DFN) model shown in Fig 1a. The model 
exhibits complex connectivity patterns common to naturally fractured reservoir where the 
distribution of fracture swarms determines the shape and intensity of fractured regions. A 
moving window is used to calculate the fracture density for each grid cell which is then 
converted to a fracture permeability multiplier using a non-linear transform.20 The fracture 
permeability is calculated using the multiplier and a predetermined fracture permeability range. 
The reference fracture permeability distribution is shown in Fig. 1b. We used a dual porosity 
streamline simulator for modeling fluid flow in the fractured medium for this example. 

We can randomly extract various percentages of fracture swarms and fractures within the 
swarms to generate prior models with varying degrees of fracture information. Because 
production data is more appropriate for characterizing large scale features, fracture swarms 
location is more critical than the detailed connectivity of individual fractures within a cell.  We 
generate a 2D prior model of fracture patterns by randomly drawing 50% of the fracture swarm 
and 50% of fractures inside each swarm.  Fig. 2a shows the prior fracture permeability model. 

We match the water cut response from the reference model for the first 500 days using the 
generalized travel time inversion. Starting with the prior model, we minimize the travel time shift 
at each producer iteratively to match the reference production data. Fig. 2b shows the final 
fracture permeability model. Fig 3 shows the observed data, initial model response and the 
matched response after performing the generalized travel time inversion. The process has not 
only matched the breakthrough times but also the amplitude of the water cut response for all the 
wells. Also, Fig. 2b shows that after inversion we are able to recover the permeability contrast in 
the reference model and reproduce the dominant fracture connectivity while retaining most of the 
features of the prior model. For example, integration of production data has connected the two 
distinct high permeability regions in the prior model. This is clearly an important feature in the 
reference model in terms of fluid flow response.  Finally, Fig. 4 shows the convergence of the 
inversion algorithm. The data misfit is reduced by almost an order of magnitude in only five 
iterations. 
 
Mathematical Formulation 
Dual Porosity Streamline Simulation. Streamline models have recently been generalized to model 
fluid flow in fractured reservoirs including matrix-fracture interactions.14,15  A common approach 
to include such interactions has been through the dual porosity conceptualization whereby the 
fluid flow is assumed to occur primarily through the high permeability fracture system and the 
matrix acts as the fluid storage.11-13 A matrix-fracture transfer function is used to exchange fluid 
between the matrix and the fracture systems. If we consider incompressible flow in a non-
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deformable media, then the conservation equations for the fracture and the matrix in a dual 
porosity system can be written as follows, 12-15  
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In Eqs. 1 and 2, the subscripts f and m represent the fracture and the matrix systems, 
respectively. In addition, the fractional flow, wff and the gravity term, G  are defined as follows, 
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We can rewrite Eq. 1 in terms of the streamline time of flight coordinate by introducing the 
coordinate transformation21, 
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where the time of flight τ  is the transit time of a neutral tracer along a streamline,22 
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The saturation equation for the fracture system, Eq.1, now takes the following form, 

0=
Γ

+
•∇

+
∂

∂
+

∂

∂

f

w

f

wfwf Gf
t

S
φφτ

r

...................................... (9) 

Eq. 9 together with the matrix saturation Eq. 2 describes the streamline transport equations 
for the dual porosity system. 

It is important to note that because the fluid flow occurs only in the fracture system, we need 
to trace streamlines only for the fractured medium. The tracing of streamlines for the dual 
porosity system is identical to that of the single porosity system.23 The form of the pressure 
equation remains unchanged when the primary transfer mechanism between the matrix and the 
fracture system is counter-current imbibition and the transfer terms cancel out. The transfer 
function for counter-current imbibition can be described by the following,14,15,24 
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The basic steps for streamline simulation in a DPSP system can be summarized as follows: (1) 
Starting with the fracture permeability field (Fig. 5a), source/sink configuration and boundary 
conditions, a pressure field is generated as in conventional finite-difference simulation (Fig. 5b) 
(2) Next, the velocity distribution in the reservoir is obtained using Darcy’s law and the 
streamlines are traced using the Pollock approach23 (Fig. 5c). The time of flight or travel time 
along streamlines are also obtained at this stage and the isochrones represent the front 
propagation (Fig. 5d) (3) The fracture saturation distribution is obtained by solving the 1-D 
saturation Eq. 9 (without the gravity term) along each streamline as shown in Fig. 6a. Gravity 
effects can be accounted for in the same manner as in single porosity streamline simulation viz. 
using operator splitting techniques.25 Fig. 6b shows the saturation distribution along a streamline 
as a function of matrix-fracture transfer rate in Eq. 10. For sF = 0, there is no interaction with the 
matrix and the solution reverts back to the single porosity formulation. Clearly, the net effect of 
the matrix-fracture transfer function is to retard the water saturation front in the fracture system. 
The matrix saturation equation is solved along the streamline at the same time and is shown in 
Fig. 6c.  (4) The matrix and fracture saturations are then mapped back onto the grid (Fig. 6e and 
6f). Again, the rapid propagation of the saturation front in the fracture system in the absence of 
transfer to the matrix ( sF = 0) can be clearly seen in Fig. 6d. (5) The streamlines may be updated 
to account for changing well conditions such as infill drilling, rate changes etc. As in single 
porosity simulation, fracture and matrix saturations are mapped from streamlines onto the grid 
before each update, followed by pressure solution, streamline generation and re-initialization. 
 
Generalized Travel Time Inversion. Production data integration via generalized travel time 
inversion has three major elements to it: representation of the data misfit, relating production 
data with reservoir parameters via sensitivities and history matching and model updating via an 
optimization procedure.  We briefly discuss these steps here. 

 
Data Misfit Calculation. The first step in the production data integration approach is 

quantification of the data misfit. We define a ‘generalized travel time’ at each well for this 
purpose. In this approach, we seek an optimal time-shift ∆t at each well so as to minimize the 
production data misfit at the well.17 This is illustrated in Fig. 7a where the calculated water-cut 
response is systematically shifted in small time increments towards the observed response and 
the data misfit is computed for each time increment. The optimal shift will be given by the ∆t 
that minimizes the misfit function, 
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Thus, we define the generalized travel time as the ‘optimal’ time-shift t~∆  that maximizes the 
R2 as shown in Fig. 7b. It is important to point out that the computation of the optimal shift does 
not require any additional flow simulations. It is carried out as a post-processing at each well 
after the calculated production response is obtained from flow simulation. The overall production 
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data misfit can now be expressed in terms of a generalized travel time misfit at all wells as 
follows  
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The generalized travel time approach has been successfully applied to many field cases. 
Furthermore, it leads to a robust and efficient inversion scheme because of its quasi-linear 
properties.7,17 

 
Analytic Sensitivity Computation and Verification. One of the important advantages of the 
streamline approach is the ability to analytically compute the sensitivity of the generalized travel 
time with respect to reservoir parameters, for example, fracture permeability. These sensitivities 
form an integral part of our data integration algorithm. 

We have seen that during generalized travel time computation we shift the entire fractional 
flow curve by a constant time. Thus, every data point in the fractional-flow curve has the same 
shift time, ttt ~

21 ∆=== Lδδ  (Fig. 7a). We can average the travel time sensitivities of all data 
points to obtain a rather simple expression for the sensitivity of the generalized travel time with 
respect to reservoir parameters m as follows,7 
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All that remains now is to calculate the sensitivity of the arrival times of various water-cut at the 
producing well, mt ji ∂∂ /, . These sensitivities can be easily obtained in terms of the sensitivities of 
the streamline time of flight,7 
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In the above expression, the fractional-flow derivatives are computed at the saturation of the 
outlet node of the streamline.7 For dual porosity streamline models, the saturation evolution 
along streamlines in the fractured system is carried out in two steps: a predictor step that involves 
transport along streamlines (identical to the single porosity calculations) and a corrector step that 
involves the matrix-fracture exchange as follows,15 
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The fractional flow in Eq. 15 is computed after the saturation is updated to account for 
matrix-fracture exchange. If gravity is included, then an additional updating is required to 
account for gravity segregation before the sensitivities are computed.25 
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Finally, the time-of-flight sensitivities can be obtained analytically in terms of simple 
integrals along streamline. For example, the time-of-flight sensitivity with respect to 
permeability will be given by6 
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where the integrals are evaluated along the streamline trajectory, and the ‘slowness’ which is the 
reciprocal of interstitial velocity, is given by 
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Note that the quantities in the sensitivity expressions are either contained in the initial 
reservoir model or are available after the forward simulation run.  

In order to verify our DPSP travel time sensitivity in Eq. 15 we compared our results with 
sensitivities obtained by numerical perturbation. For this purpose, we simulated water injection 
in a quarter five-spot pattern. A dual porosity medium with homogeneous fracture permeability 
represented by 21x21 grid cells was used for this comparison. We perturbed every grid block 
permeability by 5%, one grid block at a time and numerically computed the partial derivative of 
the arrival time of a fixed water cut with respect to permeability. Fig. 8 shows the results for 
water cuts of 0.10 and 0.20. Clearly, we obtain a good agreement between analytical travel time 
sensitivities calculated from Eq. 15 and numerical travel time sensitivities. The perturbation 
method shows some artifacts partly because the results depend on the magnitude of perturbation 
whereas the analytical sensitivities are symmetric and smooth.  The differences are also because 
of the approximations inherent in the analytical computations, particularly the assumption that 
the streamlines do not shift because of small perturbation in reservoir properties.  Nevertheless, 
as we will see later, the streamline-based sensitivities are adequate for history matching purposes 
under a wide variety of conditions. 

 
Data Inversion Various approaches have been proposed in the literature for the integration of 

production data via inverse modeling.26-30 These can be broadly classified into ‘deterministic’ 
and ‘Bayesian’ methods. Both methods have been successfully applied to history matching of 
field data. In this work, we have adopted a Bayesian formulation whereby we minimize the 
following penalized misfit function, 
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In Eq. 20, t∆~  is the vector of generalized travel-time shift at the wells; CD and CM are the 
data error covariance and the prior model parameter covariance, respectively. The minimum in 
Eq. 20 can be obtained by an iterative least-squares solution to the linear system31 
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where G is the sensitivity matrix containing the sensitivities of the generalized travel time 
with respect to the reservoir parameters and mp represents the prior model.  We use an iterative 
sparse matrix solver, LSQR, for solving the augmented linear system in Eq. 21. The LSQR 



36 

algorithm is well suited for highly ill-conditioned systems and has been widely used for large-
scale tomographic problems in seismology.32 

An important consideration in the solution of Eq. 21 is calculation of the square-root of the 
inverse of the prior covariance matrix. We have used a numerical stencil that allows for an 
extremely efficient computation of 2/1−

MC and is applicable to a wide range of 
covariance/variogram models.33 
 
Application and Results 

In this section we demonstrate the feasibility of our approach for field studies by application 
to a large-scale 3-D example. For modeling fluid flow in the reservoir we have used a 
commercial finite-difference simulator (ECLIPSE34) for this case. The dual porosity two phase 
model used is completely general and accounts for all relevant mechanisms such as fracture-
matrix transfer, compressibility, gravity and capillary effects and other cross-streamline fluxes.  
As mentioned before, we use streamlines and time of flight derived from the finite difference 
simulator to compute the sensitivity of the production data with respect to reservoir parameters. 
It is important to note that we do not need to solve the 1-D transport equations along streamlines 
for computing the sensitivities. Instead, the saturation of the outlet block from the finite 
difference solution is used directly to compute the fractional flow derivative in Eq. 15. This 
makes the sensitivity computation very fast even for finite-difference simulators and the 
additional work required involves only streamline generation, computation of the time of flight 
and the solution of 1-D integrals along streamlines to compute the travel time sensitivities. We 
must emphasize here that the streamline-derived sensitivities are only approximate, particularly 
in the presence of compressible flow and strong matrix-fracture coupling. Nevertheless, our 
experience shows these sensitivities are adequate for inversion purposes and do not have any 
noticeably adverse impact on the convergence of the solution. Our hybrid workflow capitalizes 
on the strengths of the two approaches to make fracture flow inversion efficient and at the same 
time broadly applicable. A flow chart depicting the outline of our procedure is shown in Fig. 9.  
There are 4 main steps involved in the iteration loop 
• Fluid flow simulation using a dual porosity finite difference simulator. 
• Use of finite-difference velocity field to obtain streamlines, time of flight and travel time 

sensitivities at specified time intervals, particularly at changes in well events. 
• Use of generalized travel time to quantify data misfit. 
• Iterative minimization for model updating and history matching until convergence.  

 
Large-Scale 3D Example. This synthetic example is designed after a carbonate reservoir in west 
Texas. The dual porosity reservoir model used here has a mesh size of 58x53x10 with a total of 
30,740 grid cells that represent the fracture permeability distribution. To start with, we generated 
a reference fracture pattern distribution using a discrete fracture network (DFN) model. The DFN 
model was generated on a layer by layer basis using pre-specified distributions that control 
fracture length, height, aperture and azimuth inside elliptical fracture swarms. The motivation 
behind using the DFN model is that we can use fracture parameters derived from seismic 
lineament maps, image logs, regional stress studies etc. to generate realistic fracture distribution 
constrained to field data. The discrete fracture pattern was then converted to a continuum model 
using grid block permeability multipliers as discussed before. Fig. 10 shows the reference 
fracture permeability for the ten layers. Clearly, the layers 2, 4, 7 and 9 are highly fractured and 
will have a significant impact on the flow behavior. For comparison purposes, Fig. 11 shows the 
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discrete fracture networks for layers 2, 4 and 7. The fracture permeability varies over three 
orders of magnitude from a minimum of 2.5 md to a maximum of 1600 md.  The matrix 
permeability was fixed at 1 md.  

There are 31 producers and 11 injectors in the model which consist of 11 inverted 5-spot 
patterns covering 320 acres. The detailed production rates and well schedule including infill 
drilling, well conversion and well shut-ins can be found elsewhere.7 Fig. 12 shows the well 
locations and the streamlines at the end of 7500 days of simulation.  Just as in streamline 
simulation, we generate the streamlines only when there are significant changes in the well 
events or boundary conditions.  These streamlines are then used to compute the time of flight and 
travel time sensitivities in Eq. 15.  For this example we used 11 streamline updates to account 
for changing well conditions during the sensitivity computations. 

For demonstration of our production data integration approach, we will start with two 
different prior models and match the water-cut history obtained from the reference permeability 
field.  The first model was generated using 50% of the fractures and fracture swarms in the 
reference fracture distribution (Fig. 11). Thus, the prior model contained altogether about a 
quarter of all the fractures in the reference model. The second model contained 75% of the 
fracture and fracture swarm information and thus had approximately half of all the fractures in 
the reference model. The fracture porosity was kept fixed at 0.03.  

 
Prior Model-1: 50% Fracture Information. In this example we retain 50% of the information 

in the reference fracture pattern (Fig. 11). Both the fracture swarm location and the fracture 
density within the swarms were included as part of the prior information.  The discrete fracture 
pattern generated is shown in Fig. 13 for layers 2, 4 and 7. The prior permeability distribution is 
shown in Fig. 14. As expected, the prior model exhibits less connectivity and fewer preferential 
flow paths compared to the reference model. The final permeability field after matching water-
cut response at the producers is shown in Fig. 15. The water-cut response from the prior model 
for 30 producers is shown in Fig. 16. In the same figure we have superimposed the water-cut 
response from the reference model. Clearly, we see a large discrepancy in the production 
response because of the lack of fracture connectivity and permeability contrast in the prior 
model. After inversion, a close agreement is obtained between the reference and the calculated 
production response as shown in Fig. 16.  On comparison of the final permeability field with the 
reference permeability distribution, we see that we are able identify the dominant flow paths in 
the reference model through the integration of production data. For example, in layers 2 and 7 
(Fig. 17), the inversion process re-establishes the high contrast and recovers some of the 
connected pathways seen in the reference model.  We can see similar effects across many of the 
layers. However, the results also underscore the inherent non-uniqueness in the solution, 
particularly in 3-D because of the large degree of freedom for these flow paths. This makes prior 
information vital to the success of the inversion. Finally, Fig. 18 shows the convergence of the 
inversion as a function of number of iterations.  Both travel time misfit and overall water-cut 
misfit are reduced significantly after 20 iterations. The entire history matching took 3.2 hours in 
a PC (Intel Xeon 3.06 GHz Processor). 

 
Prior Model-2 : 75% Fracture Information. The prior model for this example was generated 

by retaining 75% of the information regarding fracture swarms and fracture density within 
swarms. Again, the discrete fracture network generated for layers 2, 4, and 7 are shown in Fig. 
19. The permeability distribution is shown in Fig. 20. As expected, the prior model for this case 
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shows a closer resemblance to the reference permeability field. This is also reflected in the 
computed water-cut response shown in Fig. 22. Clearly, the production response for this model 
is much closer to the reference production history compared to the previous model. Although 
many of the wells show good match, the lack of fracture connectivity and permeability contrast 
still impacts the production response of several wells, for example, wells 2, 3, 8, 9 and 14, 
among others. After inversion, we obtain excellent agreement for all wells as shown in Fig. 22. 
The final permeability field after inversion is shown in Fig. 21.  On closer observation, for 
example, layers 3 and 5 (Fig. 23), we see that we are able to match the production data with 
minimum deviation from the prior model. This is expected because of the higher fracture 
information in the prior model. Also the inverse algorithm by design attempts to preserve prior 
information to maintain geologic realism.31 Fig. 24 shows the misfit reduction as a function of 
the number of iterations for this example.  Again, the misfit is reduced by almost an order of 
magnitude. 

Finally, on comparing the results of inversion using the two different prior models, we can 
clearly see the role of prior information in our ability to predict fluid flow through fractured 
reservoirs. Although we were able to match the production history reasonably well starting with 
50% fracture information, the results improved significantly when additional fracture data were 
incorporated.  This observation is true for inverse modeling in general; however, the impact is 
expected to be more pronounced for fractured reservoirs because of the high contrast between the 
fracture and matrix permeability and the role of preferential fracture flow paths on the overall 
flow behavior. The inverse problem is ill-posed and we can not expect to reproduce the details of 
the fracture pattern in the reference model. However, we can reduce the non-uniqueness by 
anchoring the solution close to the prior model. By starting with different prior models and 
matching different ‘realizations’ of the production data, we can explore the uncertainty space by 
sampling from the posterior distribution.35  
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            (a) Discrete fracture network            (b) Reference fracture permeability                            (c)Streamline pattern 

 
Fig. 1— Reference model for the 9-spot 2D case 

 

  
                                   (a) Prior permeability model                                   (b)  Final permeability model 

 
Fig. 2— Prior and final permeability models after integrating water cut data. 
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Fig. 6 —Saturation evolution along streamlines – single and dual porosity examples. 
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Fig. 5— Streamline and time of flight (TOF) calculations. 
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                                         (a) Time shift                                                                                   (b) Maximizing correlation 

 
Fig. 7—Illustration of generalized travel-time inversion: (a) History-matching by systematically shifting the calculated 

water-cut to the observed history, (b) Best shift-time that maximizes the correlation function. 
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Fig. 8— Comparison of numerical and analytical sensitivities in a ¼-five spot pattern. 
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(a) Layer 2                                                       (b) Layer 4                                                (c) Layer 7 
 

Fig. 11—Discrete fracture layers converted to permeability (upper panel) using fracture intensity 
 
 
 
 
 

Fig. 10—Reference fracture permeability distribution.
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(a) Well locations and streamlines                                                    (b) 3D Streamlines 

 
Fig. 12—(a) Top view shows well locations and streamlines at the end of the last update.  (b) 3D streamlines traverse layers 
in 3D space. 

 

                    
Layer#2                                                                 Layer#4                                                            Layer#7 

Fig. 13—Discrete fracture networks for 3 different layers with 50% fracture information. 

    
 

Fig. 14— Permeability distribution for prior 
model with 50% fracture information. 

Fig. 15—Final permeability distribution after 
water cut integration.  
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Fig. 16— Water cut match and initial response for 30 wells.  Almost all the wells showed better match after inversion. 
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Fig. 17— Two layers illustrating that integration of water cut data re-established permeability contrast and identified 

major flow paths while preserving the prior information. 
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Fig. 18—Data misfit vs. iterations (prior model-1) 
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Fig. 19—Discrete fracture network for 3 layers with 70% fracture information 

 

 

 
 

Fig. 20— Permeability distribution for the prior model with 
75% fracture information. 

Fig. 21—Final permeability distribution after water cut 
integration.   
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Fig. 22— Water cut Match and initial response for 30 wells for prior model-2. 
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Fig. 23— Two layers illustrating changes to the prior model for matching production data.  Note that much of the prior 

model remains unchanged to preserve geologic realism. 
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Fig. 24—Misfit vs. number of iterations (prior model-2) 
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CONCLUSIONS 
 
Part-I 
 

In this work we highlight the similarities between streamline-based assisted and automatic 
history matching. We enhance the streamline-based assisted history matching in two important 
aspects that can significantly improve its efficiency and effectiveness. First, we utilize 
streamline-derived analytic sensitivities to relate the changes in reservoir properties to the 
production response. These sensitivities can be computed analytically and contain much more 
information than that used in the assisted history matching. Second, we utilize the sensitivities in 
an optimization procedure to determine the spatial distribution and magnitude of the changes in 
reservoir parameters needed to improve the history-match. By intervening at each iteration 
during the optimization process, we can retain control over the history matching process as in 
assisted history matching. This allows us to accept, reject, or modify changes during the 
automatic history matching process. We have demonstrated the power and utility of our approach 
using two large field examples.  

Some specific conclusions from this study can be summarized as follows: 
• Use of streamline-derived sensitivities can significantly improve the efficiency of assisted 

history matching. In particular, the sensitivities can be utilized to directly obtain the changes 
in reservoir properties necessary to improve the history match in a more objective way. This 
eliminates the time-consuming and subjective manual adjustment of parameters in the 
assisted history matching process. By intervening at every stage of the iterative process, we 
can retain control over the history matching process to preserve plausibility and geologic 
realism. 

• Streamline-based sensitivities and inversion allow us to take into account the full coupling of 
the streamlines in the reservoir rather than changing individual wells or streamline bundles at 
a time. This not only significantly increases the efficiency, but also preserves geologic 
continuity and minimizes the chances of introducing non-physical artifacts during the history 
matching process.  

• The power and utility of streamline-based inversion is demonstrated using two field 
examples with model sizes ranging from 105 to 106 grid blocks and with over one hundred 
wells. In both the cases, the streamline-based automatic history matching led to better 
individual well matches as well as field-wide matches compared to assisted history matching 
and with no apparent loss of geologic realism. We have shown that the automatic history 
matching can be used both for conditioning geologic models and also to further improve the 
models derived from the assisted history matching. 

• The use of sensitivities during assisted history matching can lead to significant savings in 
computation time and manpower. For the field examples presented here, the automatic 
history matching took days compared to months for assisted history matching. This makes it 
possible to generate multiple history-matched models to perform uncertainty analysis. 

 

Part-II 
 
We have proposed a streamline-based production data integration technique for naturally 
fractured reservoirs using the dual porosity approach. The principal features of our method are 
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the extension of streamline-derived analytic sensitivities to account for matrix-fracture 
interactions and the use of our previously proposed generalized travel time inversion for history 
matching. Our proposed workflow has been demonstrated by using both a dual porosity 
streamline simulator and a commercial finite difference simulator. The approach is 
computationally efficient and well suited for large scale field applications in naturally fractured 
reservoirs with changing field conditions. The use of the generalized travel time concept enabled 
us to match both the breakthrough and amplitude of the reference response in one step. The main 
findings of our study are summarized as follows. 
• Streamline-based analytic sensitivity computations have been extended to naturally fractured 

reservoirs using the dual porosity approach. The matrix-fracture interactions are accounted 
for using predictor-corrector steps that involve convection along streamline followed by 
matrix-fracture exchange.  

• A comparison of the streamline-based sensitivities with those computed using the numerical 
perturbation method shows close agreement, indicating the validity of our approach. The 
streamline-based sensitivity computation is extremely efficient and requires a single forward 
simulation. 

• We have used the streamline-derived sensitivities in conjunction with a previously proposed 
generalized travel time inversion for integration of production data in fractured reservoirs. 
The generalized travel-time inversion is robust, computationally efficient and eliminates 
much of the time-consuming trial-and-error associated with manual history matching.  

• We have combined the streamline-derived sensitivities with a dual porosity finite-difference 
simulator to exploit the efficiency of the streamline approach and the versatility of the finite-
difference simulator. Use of finite-difference simulation allows us to include compressibility 
effects, strong matrix fracture coupling and cross-streamline mechanisms. 

• We have demonstrated the power and efficiency of our proposed method using 2-D and 3-D 
examples designed after realistic field conditions. For the 3-D application, the results indicate 
the role of production data and prior information in terms of reproducing the fracture 
connectivity and fluid flow response in the reservoir.  
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LIST OF ACRONYMS AND ABBREVIATIONS 
 
Part-I 

 
CD  = data error covariance 
CM  = prior model parameter covariance  
fw  = fractional flow of water 
G = sensitivity matrix 
I = identity matrix 
k  = permeability 
L = second spatial difference operator 
m, m = reservoir parameter and its vector 
mp  = prior reservoir model parameter 
Ndj = number of dynamic data observations of jth well 
Nw  = number of wells 
P = pressure 
R2  = coefficient of determination  
s = slowness 
Sw = water saturation 
t = time 
∆t  = travel-time shift 

t~∆  = generalized travel time 
t∆~  = generalized travel-time vector 

yobs  = observed response 
obsy  = averaged observed response 

ycal  = calculated response 
β1  = weighting factor for the prior model 
β2  = weighting factor for the roughness term 
λrt  = total relative mobility 
φ = porosity 
τ = streamline time of flight 
 

Part-II 
 

D  =Depth from datum, L 
f  = fractional flow, fraction 
Fs  = shape factor, L-2 
k  = permeability, L2 
kr  = relative permeability, dimensionless 
l  = matrix length, L 
P  = pressure, ML-1T-2 
Pc  = capillary pressure, ML-1T-2 

Pgh  = pressure due to a gravity head in fracture  
   system, ML-1T-2 
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q  = source term, L3T-1 
S  = saturation, fraction 
Sorm  = matrix residual oil saturation, 

   dimensionless 
Swn m = normalized water saturation in matrix, 

   dimensionless 
t  = time, T 
u  = velocity, LT-1 

 
Subscripts 

f  = fracture 
i  = grid-block or node index 
m  = matrix 
n  = time-step index 
o  = oil 
w  = water 
x  = x-direction 
y  = y-direction 
z  = z-direction 

 


