Utilization of a Regional Water Chemistry Database to Improve Formation Evaluation and Reservoir Simulation in Low Permeability Reservoirs of Southwest Wyoming

DOE Contract DE-FC-02NT41437

Presented by: Randal L. Billingsley Maria W. Henry Leta K. Smith Keith J. Jagiello

Advanced Resources International April 28, 2005 AAPG Hedberg Conference "Understanding, Exploring and Developing Tight Gas Sands" Vail, Colorado

Acknowledgements

- National Energy Technology Laboratory, Department of Energy, Funding through Contract DE-FC-02NT41437
- Participating Parties
 - BP
 - Schlumberger
 - Bill Barrett Corp.
 - Anadarko
 - Devon
 - Shell
 - Stone
 - Ultra
 - USGS

Presentation Outline

- Database Overview
- Field Study
 - Eastern Green River Basin
- Conclusions
 - High Quality Water Chemistry has Improved Formation Evaluation in the Field Study Area
 - SP Used to Determine Gas-Water Boundary
 - Gas-water Boundary Usually Found Near Base of Significant Almond Coals (a local source for gas?)
 - Sands are a Series of Discontinuous Lenses

Database Overview

- Historical Data
 - 3200 Well Locations/GGRB and WRB
 - 8000 Chemical Analyses
- Current Study
 - 86 new samples with full analyses and isotopes
 - Waltman/Cave Gulch, Pinedale, Tablerock, Wamsutter
 - 7 component "Stiff" Analyses
 - Strontium, Oxygen Isotopes
- Highly Accessible
 - Quality Screened
 - Access/Excel Formats

Database Coverage

Water Database Value

- Catalogue of Water Resistivity (RW)
 - Improved Formation Evaluation
 - Critical for delineating gas from fresh water
- Provide Source Point for Water Chemistry Ideas and Technology
 - Areas of Diagenetic Porosity Enhancement
 - Potential Flow Paths
 - Hydrologic Compartments
- Basin Modeling Data
- Database facilitates organization, mapping and analysis of large amounts of water chemistry data

Eastern Green River Basin Field Study

Eastern Green River Basin Field Study

Operator Issue: How to minimize water while capturing additional resources?

- Long-lived historical production area
- 88 wells
- 40 BCF Cumulative Production
- Water production problems
- Available data
 - Well logs, core, 3D seismic, production data
 - Water chemistry data

Technical Strategy: Improve formation evaluation, simulate reservoir to understand bulk permeability/water production,

Stratigraphic Column Washakie Basin, Wyoming

Modified from Roehler, 1990

Work Flow

- Build Stratigraphic Correlation Framework
- Interpret 3D Seismic for Structure
- <u>Perform Base Petrophysical Study for Reservoir</u> <u>Characterization</u>
 - Emphasized Produced Water Chemistry for High Quality Formation Water Resistivity (Rw)
- Assembled 23 Unit Dual Permeability Reservoir Model
 - Discrete Fracture Network Permeability Grid
 - Constrained by Geomechanical Simulation of Basement Faulting
 - Matrix Porosity and Permeability From Petrophysics
- Production History Match/Forward Simulation

Type Log

Water Resistivity (Rw) and Petrophysics

- Evaluated Regional Almond Rw Trends
 - Variable Rw influenced by Depositional Environments
- 9 Township Focused Area
 - Vertical and Horizontal Variation
 - Established Rw-Total Dissolved Solids (TDS) Relationship
- Established Rw by Zones for Saturation Calculations
 - Aquifer water is so fresh (<5000 ppm NaCl) that it is difficult to distinguish from gas invaded by a fresh water filtrate</p>
 - Porous and permeable Ericson has high resistivity, although it only produces water
 - Used water chemistry, fluids and logs in Upper and Middle Almond to calibrate Rw in gas zone, and the Ericson to calibrate Rw in the aquifer

TDS/Rw Cross-Plot 68 degrees F 9 Township Area

AVERAGE PRODUCED WATER RESISTIVITY

Red Shades indicate High Rw, Blue indicate Low Rw (@ 68 F)

SP-Rw

Mungo Federal 1-14

Champlin 221C

Despite difficulties, SP to Rw calculations show a dramatic shift in formation water salinity in the upper (more saline) and lower (fresher) parts of the formation.

Pickett Plot Gas Zone & Aquifer

7 well crossplot. Well collection used: Unnamed Collection Constraints: VCLSTB (0.00-0.10) Resistivity-Porosity Crossplot - Pickett Plot

Gas Zone Upper & Middle Almond Vclay<10%

a=1.0, n=2.00, m=1.74 Rw=0.17 @ 200F NaCl=13,000 ppm Water Lower Almond & Ericson Vclay<10%

a=1.0, n=2.00, m=1.74 Rw=0.63 @ 200F NaCl=3,500 ppm

Gas-Water Boundary & Coal & Wells

Cathedral Federal 3-2

Mungo Federal 1-14

Wamsutter Rim 17-1

Gas-Water Boundary is picked based on SP and/or Resistivity curves.

Generally near Almd_SH2 and Almd_SH3 picks in this township.

Usually appears near first significant appearance of coals, which is a presumed local gas source.

Follows dipping structure, but not rigorously; therefore, is a boundary between discontinuous gas-charged

& aquifer sands rather than an actual contact.

SP-GWC Structure Map

Structure Map on Gas-Water Boundary

Gas-Water Boundary follows dipping structure, but not rigorously; therefore, this is a boundary between discontinuous gas-charged & aquifer sands rather than an actual contact.

Testing Gas-Water Boundary Hypothesis

The depth of the gas-water boundary was compared to the initial fluid production in 41 wells as reported in the Wyoming Oil and Gas Commission website.

Initial Production tests above gas-water boundary (15 wells)

< 10 BWPD	17 tests
11-20 BWPD	3 tests
21-30 BWPD	2 tests

Initial Production tests below gas-water boundary (26 wells)	
<25 BWPD	7 (4 not perf'd in permeable sand below GWB)
25-50 BWPD	2 tests
>50 BWPD	20 tests

Conclusions

- High Quality Water Chemistry has Improved Formation Evaluation in the Field Study Area
 - SP used to determine gas-water boundary
 - Supported by initial production data (75% agreement)
 - Useful for perforation and completion strategy
- Gas-water Boundary Usually Found Near Base of Significant Almond Coals (a local source for gas?)
- Sands are a series of discontinuous lenses

