Battelle The Business of Innovation

ROTATING PERMANENT MAGNET EXCITER FOR PIPELINE INSPECTION

Bruce Nestleroth and Rick Davis

New inspection methodology

- A new method for the internal inspection of pipelines
- Eddy current based, but NOT local or remote field eddy currents
- Builds on the advances in permanent magnet technology

Acknowledgment

This work is cofunded by

 Department of Energy, National Energy Technology Laboratory (DOE NETL) Award No. DE-FC26-03NT41881

and

 Pipeline Research Council International (PRCI) Contract No. PR-003-03155

Outline

- Concept of Operation
- Magnetic Finite Element Modeling
- Prototype Implementation
- Theory of Operation
- Detection of Metal Loss Corrosion
- Electronic Improvments
- Application to Unpiggable Pipelines
- Summary

Concept of Operation

- Permanent magnets spin in a pipe
- Currents induced in the pipe wall
- Sensors measures magnetic field at the pipe surface

Magnetic fields detected in pipe

Current flow in the pipe

Magnetic finite element modeling

Log₁₀ of the current density

Mul-11	171-11-11
MII-11	111000000000000000000000000000000000000
W11-11-11-11	111
Mill/11-11-11	T7
MALLIG-11	T-1 /
	1
	13477748+144111
MAARER TO THE	
	-10
MARRAY PRANK AND AND T	**********
WALK-SYA - TAAAAFT	T.S. C. C. C. C. C. C. A.A.A.
	77 1 1 4 4 4 + + + 4 + = 44 str.
	T14444

Current flow

Battelle The Business of Innovation

Magnetic field strength

- Pipe Diameter is 12 inches
- Two poles

Prototyping – 2 pole system

Prototyping – 4 pole system

Prototype System Specs

- 12 inch diameter pipe
- Magnetizer BAR
 - Diameter ~½ gap
 - Magnet 1" X 2" NdFeB 38
 - Even number of poles 2
- Rotation
 - 2 magnets
 - 300rpm x 1pair/60sec = 5 Hertz
- Sensors
 - Hall effect sensors
 - Gain 50x
 - Better low frequency response than coils
 - Axial and Radial

Compare: Modeling and experiment

- Pipe Diameter is 12 inches
- Two poles

Theory

A first principles approximation, the peak magnetic field B_{pk} at the sensor is:

$$B_{pk}(z) \propto \frac{\beta}{n} (\frac{r}{\delta})^2 M_0 e^{-(\frac{n}{r})Z}$$

$$Amplitude Decay$$

- Z is the distance from the magnets along the pipe
- *r* is radius
- *n* is the number of pole pairs
- δ is the classical skin depth
- β is a coupling factor that includes liftoff (between 0 and 1)

The Business of Innovation

• M_0 is magnetic energy in magnet piece

Compare: Theory and experiment

	Diameter		Number	Pole Pairs / Radius	
	inches	meters	of poles	calculated	experiment
12 inch 2 pole	12	0.305	2	6.6	7.1
12 inch 4 pole	12	0.305	4	13.1	13.7
6 inch	6	0.152	2	13.1	13.9

Battelle The Business of Innovation

Typical metal loss signal

Banene The Business of Innovation

NETL/DOT Benchmark Tests at Battelle's Pipeline Simulation Facility

- September 2004
- 12 inch diameter pipe
- 0.375 wall thickness
- ERW and seamless

MC09 Signal

Time (digital counts)

Sensor configuration

- Pairs of sensors measure the axial and radial magnetic field
- 3 pairs of sensors

3 scan lines with two sensors orientations per line Note: Not all three sensor pair pass under defect, especially narrow ones,

The Business of Innovation

MC09 Signals for 3 Sensor Pairs

Time (digital counts)

MC09 Deep Long

Battelle The Business of Innovation

MC09 Synchronous Detection

Sensor Pairs 1 and 2 detect defect

Electronics Improvements

- Digital lock-in amplifier
 - National Instruments PXI-4472B,8 Inputs, 24 BIT, .5HZ AC Cutoff Filter
- Currently implemented three for 24 Channels
 - One sync to rotating magnet
 - 22 channels for 11 sensor pairs (axial and radial
 - One spare
- Sensors
 - Hall effect sensors, currently using Honeywell SS495
 - Next generation higher sensitivity, programmable gain and offset sensors being examined
 - 9 volts at 50 milli amps

Result: Cleaner signals, faster data rates

The Business of Innovation

Real time data display

24 Feet of Axial Data

24 Feet of Radial Data

The Business of Innovation

Application to Unpiggable Pipelines

- The two pole configuration well suited for passing narrow pipeline restrictions such as plug valves.
- Magnetizer can be designed to shrink in magnetizing direction to 2/3 of pipe ID.
- Each sensor is small three terminal semiconductor. Sensors array easily collapsible.
 Batelle

The Business of Innovation

Telescoping and Hinged Magnetizer

Examining Gap Distance

Battelle The Business of Innovation

Gap Distance

Battelle The Business of Innovation

Summary

- A new inspection method has been developed based on rotation of permanent magnets.
- Theory, modeling, and experiments show the existence of strong currents flowing in the circumferential direction.
- Pipeline anomalies disrupt the flow of the circumferential currents. The disruption can be detected using magnetic field sensors
- The sensors are positioned a pipe diameter away from the magnets. This differs from RFEC which needs 2 or more.
- Easily configured to pass obstructions such as plug valves.

The Business of Innovation