APPENDIX A-2. Techlog layouts

Figure A-1 : Well 1-32 layout-geochemical and conventional log analyzed by Techlog

Figure A-2: Well 1-32 layout—Porosity, Pc, Swi and Swirr at Pc_irr equal 20 bar

Figure A-3: Well 2-32 showing permeability by FZI-SWPHI and Coates compared to core. The second column on the right compares permeability by FZI-SWPHI and Coates permeability with core permeability on the third track from right

LAYOUT

Well(s): WELLINGTON KGS \#1-32 Author: Mina FAzELALAVI
Project: Wellington2

Well: WELLINGTON KGS \#1-32

Figure A-4: Well 1-32 showing zone a and b. The first column on the right compares Coates permeability and permeability from FZI-SWP with core permeability

Well: WELLINGTON KGS \#1-32

Figure A-5: Well 1-32 layout showing six zones based on similar FZI variation in each zone

Figure A-6: Equivalent zones in wells 147, 149, and Frankum\#1 with equal FZI values corresponding to the six zones of Well 1-32

Figure A-7: Equivalent zones in wells Markley\#2 and Frankum\#1-32 with equal FZI values corresponding to the six zones of Well 1-32

Figure A-8: Figure A 7: Equivalent zones in wells Meridith\#4, Meredith2, and Meridith3 with equal FZI values corresponding to the six zones of Well 1-32

Figure A-9: Equivalent zones in wells 1-28, 148, and Cole \#2 with equal FZI values corresponding to the six zones of Well 1-32

Figure A-10: Equivalent zones in wells Cole \#1, Peasel \#1, 145, and 146 with equal FZI values corresponding to the six zones of Well 1-32

LAYOUT
Well(s): WELLINGTON KGS \#1-28
Project: Wellington2

Scale: 1:200

Figure A- 11: Well 1-28 showing average FZI in each of six zones in track 3 from right and comparing permeability from FZISWP method to Coates permeability

Figure A-12: Layout of Peasel \#1 comparing permeability from the FZI-SWP method to Coates permeability and showing average FZI in each of the six zones

Figure A-13: Layout of Cole \#1 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-14: Layout of Cole \#2 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-15 : Layout of Well 148 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-1 6: Figure A-15: Layout of Meridith \#3 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-17: Layout of Meridith \#2 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-18: Layout of Meridith \#4 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-19: Layout of Frankum \# 1-32 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-20: Layout of Markley \#2 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-21: Layout of Frankum \#1 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-22: Layout of Well \#149 showing average FZI in each of six zones and permeability from the FZI-SWP method:

Figure A-23: Layout of Well \#147 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-24: Layout of Well \#145 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-25: Layout of Well \#146 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-26: Calculated initial water saturation using the Pc M.F.Alavi method compared with saturation from the NMR log

APPENDIX A-3. Relative Permeability Chat Section

RQI=						$\mathbf{0 . 3 2 0}$			
Sor	Swc	Chat	Krw max	Kro max					
0.321	0.45	$\mathbf{1}$	0.204	0.871					
q	1.5		p	2.5					
Sw	So	SwD	Krw	kro					
0.450	0.550	0.000	0.000	0.871					
0.470	0.530	0.087	0.005	0.694					
0.490	0.510	0.174	0.015	0.540					
0.510	0.490	0.262	0.027	0.408					
0.530	0.470	0.349	0.042	0.298					
0.550	0.450	0.436	0.059	0.208					
0.570	0.430	0.523	0.077	0.137					
0.590	0.410	0.610	0.097	0.083					
0.610	0.390	0.698	0.119	0.044					
0.630	0.370	0.785	0.142	0.019					
0.650	0.350	0.872	0.166	0.005					
0.670	0.330	0.959	0.191	0.000					
0.679	0.321	1.000	0.204	0.000					

Table B1: Relative permeability for the chat section at RQI=0.320

RQI=				$\mathbf{0 . 2 4 5}$		
Sor	Swc	Chat	Krw max	Kro max		
0.270	0.56	3	0.224	0.867		
q	1.5		p	2.5		
Sw	So	SwD	Krw	kro		
0.560	0.440	0.000	0.000	0.867		
0.580	0.420	0.118	0.009	0.634		
0.600	0.400	0.235	0.026	0.443		
0.620	0.380	0.353	0.047	0.292		
0.640	0.360	0.471	0.072	0.177		
0.660	0.340	0.588	0.101	0.094		
0.680	0.320	0.706	0.133	0.041		
0.700	0.300	0.824	0.167	0.011		
0.720	0.280	0.941	0.204	0.001		
0.730	0.270	1.000	0.224	0.000		

Table B3: Relative permeability for the chat section at RQI=0.245

RQI $=$				$\mathbf{0 . 2 8 0}$		
Sor	Swc	Chat	Krw max	Kro max		
0.300	0.5	$\mathbf{2}$	0.214	0.869		
q	1.5		p	2.5		
Sw	So	SwD	Krw	kro		
0.500	0.500	0	0	0.869		
0.520	0.480	0.1	0.007	0.668		
0.540	0.460	0.2	0.019	0.498		
0.560	0.440	0.3	0.035	0.356		
0.580	0.420	0.4	0.054	0.242		
0.600	0.400	0.5	0.075	0.154		
0.620	0.380	0.6	0.099	0.088		
0.640	0.360	0.7	0.125	0.043		
0.660	0.340	0.8	0.153	0.016		
0.680	0.320	0.9	0.182	0.003		
0.700	0.300	1.0	0.214	0.000		

Table B2: Relative permeability for the chat section at RQI=0.280

RQI $=\mathbf{y y y}$				
Sor	Swc	Chat	Krw max	Kro max
0.240	0.6	4	0.232	0.865
q	1.5		p	2.5
Sw	So	SwD	Krw	kro
0.600	0.400	0.000	0	0.865
0.620	0.380	0.125	0.010262	0.620
0.640	0.360	0.250	0.029026	0.421
0.660	0.340	0.375	0.053324	0.267
0.680	0.320	0.500	0.082097	0.153
0.700	0.300	0.625	0.114735	0.074
0.720	0.280	0.750	0.150823	0.027
0.740	0.260	0.875	0.190058	0.005
0.760	0.240	1.000	0.232206	0.000

Table B4: Relative permeability for the chat section at RQI=0.220

RQI=				
Sor	Swc	Chat	Krw max	Kro max
0.210	0.66	$\mathbf{5}$	0.240	0.864
q	1.5		p	2.5
Sw	So	SwD	Krw	kro
0.660	0.340	0.000	0.000	0.864
0.680	0.320	0.154	0.014	0.569
0.700	0.300	0.308	0.041	0.344
0.720	0.280	0.462	0.075	0.184
0.740	0.260	0.615	0.116	0.079
0.760	0.240	0.769	0.162	0.022
0.780	0.220	0.923	0.213	0.001
0.790	0.210	1.000	0.240	0.000

Table B5: Relative permeability for the chat section at RQI=0.200

RQI=				
Sor	Swc	Chat	Krw max	Kro max
0.090	0.83	$\mathbf{7}$	0.268	0.858
q	1.5		p	2.5
Sw	So	SwD	Krw	kro
0.830	0.170	0	0.000	0.858
0.850	0.150	0.25	0.034	0.418
0.870	0.130	0.5	0.095	0.152
0.890	0.110	0.75	0.174	0.027
0.910	0.090	1	0.268	0.000

Table B7: Relative permeability for the chat section at RQI=0.145

RQI=						
Sor	Swc	Chat	Krw max	Kro max		
0.155	0.75	6	0.251	0.861		
q	1.5		p			2.5
Sw	So	SwD	Krw	kro		
0.750	0.250		0	0		
0.770	0.230	0.210526316	0.02429	0.477		
0.790	0.210	0.421052632	0.068701	0.220		
0.810	0.190	0.631578947	0.126212	0.071		
0.830	0.170	0.842105263	0.194317	0.009		
0.845	0.155		1	0.251455		
				0.000		

Table B6: Relative permeability for the chat section at RQI=0.175

RQI $=\mathbf{y y y y}$				
Sor	Swc	Chat	Krw max	Kro max
0.030	0.930	$\mathbf{8}$	0.287	0.855
q	1.5		p	2.5
Sw	So	SwD	Krw	kro
0.930	0.070	0	0.000	0.855
0.950	0.050	0.5	0.101	0.151
0.970	0.030	1	0.287	0.000

Table B8: Relative permeability for the Ccat section at RQI=0.120

APPENDIX A-4. Relative Permeability Carbonate Section

Table C1: Relative permeability table for the carbonate section at RQI=0.520

RQI=		0.520		
Sor	Swc	Carbonate	Krw max	Kro max
0.364	0.08	1	0.172	0.880
q	1.5		p	2.5
Sw	So	SwD	Krw	kro
0.080	0.920	0.000	0	0.880
0.100	0.900	0.036	0.001	0.803
0.120	0.880	0.072	0.003	0.730
0.140	0.860	0.108	0.006	0.661
0.160	0.840	0.144	0.009	0.597
0.180	0.820	0.180	0.013	0.536
0.200	0.800	0.216	0.017	0.479
0.220	0.780	0.252	0.022	0.426
0.240	0.760	0.288	0.027	0.377
0.260	0.740	0.324	0.032	0.331
0.280	0.720	0.359	0.037	0.289
0.300	0.700	0.395	0.043	0.250
0.320	0.680	0.431	0.049	0.215
0.340	0.660	0.467	0.055	0.182
0.360	0.640	0.503	0.061	0.153
0.380	0.620	0.539	0.068	0.127
0.400	0.600	0.575	0.075	0.104
0.420	0.580	0.611	0.082	0.083
0.440	0.560	0.647	0.090	0.065
0.460	0.540	0.683	0.097	0.050
0.480	0.520	0.72	0.105	0.037
0.500	0.500	0.755	0.113	0.026
0.520	0.480	0.791	0.121	0.018
0.540	0.460	0.827	0.129	0.011
0.560	0.440	0.863	0.138	0.006
0.580	0.420	0.899	0.147	0.003
0.600	0.400	0.935	0.156	0.001
0.620	0.380	0.971	0.165	0.0001

Table C2: Relative permeability table for the carbonate section at $\mathrm{RQI}=0.380$

$\mathrm{RQI}=$		0.380		
Sor	Swc	Carbonate	Krw max	Kro max
0.342	0.11	2	0.192	0.874
q	1.5		p	2.5
Sw	So	SwD	Krw	kro
0.110	0.890	0.000	0	0.874
0.130	0.870	0.037	0.001	0.797
0.150	0.850	0.073	0.004	0.723
0.170	0.830	0.110	0.007	0.654
0.190	0.810	0.146	0.011	0.589
0.210	0.790	0.183	0.015	0.528
0.230	0.770	0.219	0.020	0.471
0.250	0.750	0.256	0.025	0.418
0.270	0.730	0.292	0.030	0.369
0.290	0.710	0.329	0.036	0.323
0.310	0.690	0.365	0.042	0.281
0.330	0.670	0.402	0.049	0.242
0.350	0.650	0.438	0.056	0.207
0.370	0.630	0.475	0.063	0.175
0.390	0.610	0.511	0.070	0.146
0.410	0.590	0.548	0.078	0.120
0.430	0.570	0.584	0.086	0.097
0.450	0.550	0.621	0.094	0.077
0.470	0.530	0.657	0.102	0.060
0.490	0.510	0.694	0.111	0.045
0.510	0.490	0.73	0.120	0.033
0.530	0.470	0.767	0.129	0.023
0.550	0.450	0.803	0.138	0.015
0.570	0.430	0.840	0.148	0.009
0.590	0.410	0.876	0.157	0.005
0.610	0.390	0.913	0.167	0.002
0.630	0.370	0.949	0.178	0.001
0.650	0.350	0.986	0.188	0.00002
0.658	0.342	1.000	0.192	0.000

Table C3: Relative permeability table for the carbonate section at RQI=0.250

RQI=		0.250		
Sor	Swc	Carbonate	Krw max	Kro max
0.315	0.15	3	0.222	0.867
q	1.5		p	2.5
Sw	So	SwD	Krw	kro
0.150	0.850	0.000	0	0.867
0.170	0.830	0.037	0.002	0.789
0.190	0.810	0.075	0.005	0.714
0.210	0.790	0.112	0.008	0.644
0.230	0.770	0.149	0.013	0.579
0.250	0.750	0.187	0.018	0.517
0.270	0.730	0.224	0.024	0.460
0.290	0.710	0.261	0.030	0.406
0.310	0.690	0.299	0.036	0.357
0.330	0.670	0.336	0.043	0.311
0.350	0.650	0.374	0.051	0.269
0.370	0.630	0.411	0.059	0.231
0.390	0.610	0.448	0.067	0.196
0.410	0.590	0.486	0.075	0.165
0.430	0.570	0.523	0.084	0.136
0.450	0.550	0.560	0.093	0.111
0.470	0.530	0.598	0.103	0.089
0.490	0.510	0.635	0.112	0.070
0.510	0.490	0.672	0.122	0.053
0.530	0.470	0.710	0.133	0.039
0.550	0.450	0.75	0.143	0.028
0.570	0.430	0.784	0.154	0.019
0.590	0.410	0.822	0.165	0.012
0.610	0.390	0.859	0.177	0.006
0.630	0.370	0.897	0.189	0.003
0.650	0.350	0.934	0.200	0.001
0.670	0.330	0.971	0.213	0.0001
0.685	0.315	1.000	0.222	0.0000

Table C4: Relative permeability table for the carbonate section at RQI=0.160

RQI $=$						
Sor 0.278	SwC 0.22	Carbonate 4	Krw max 0.259	Kro max 0.860		
q	1.5		p			2.5
Sw	So	SwD	Krw	kro		
0.220	0.780	0.000	0	0.860		
0.240	0.760	0.040	0.002	0.777		
0.260	0.740	0.080	0.006	0.699		
0.280	0.720	0.120	0.011	0.625		
0.300	0.700	0.159	0.017	0.557		
0.320	0.680	0.199	0.023	0.493		
0.340	0.660	0.239	0.030	0.434		
0.360	0.640	0.279	0.038	0.380		
0.380	0.620	0.319	0.047	0.329		
0.400	0.600	0.359	0.056	0.283		
0.420	0.580	0.399	0.065	0.241		
0.440	0.560	0.438	0.075	0.203		
0.460	0.540	0.478	0.086	0.169		
0.480	0.520	0.518	0.097	0.139		
0.500	0.500	0.558	0.108	0.112		
0.520	0.480	0.598	0.120	0.088		
0.540	0.460	0.638	0.132	0.068		
0.560	0.440	0.677	0.145	0.051		
0.580	0.420	0.717	0.158	0.037		
0.600	0.400	0.757	0.171	0.025		
0.620	0.380	0.80	0.185	0.016		
0.640	0.360	0.837	0.199	0.009		
0.660	0.340	0.877	0.213	0.005		
0.680	0.320	0.917	0.228	0.002		
0.700	0.300	0.956	0.243	0.00034		
0.720	0.280	0.996	0.258	0.00000		
0.722	0.278	1.000	0.259	0.000		

Table C5: Relative permeability table for the carbonate section at RQI=0.100

RQI=							
Sor 0.250	Swc 0.315	Carbonate $\mathbf{5}$	Krw max 0.306	Kro max 0.852			
q	1.5			p			2.5
Sw	So	SwD	Krw	kro			
0.315	0.685	0.000	0	0.852			
0.335	0.665	0.046	0.003	0.757			
0.355	0.645	0.092	0.009	0.669			
0.375	0.625	0.138	0.016	0.588			
0.395	0.605	0.184	0.024	0.512			
0.415	0.585	0.230	0.034	0.443			
0.435	0.565	0.276	0.044	0.380			
0.455	0.545	0.322	0.056	0.322			
0.475	0.525	0.368	0.068	0.270			
0.495	0.505	0.414	0.081	0.224			
0.515	0.485	0.460	0.095	0.182			
0.535	0.465	0.506	0.110	0.146			
0.555	0.445	0.552	0.125	0.114			
0.575	0.425	0.598	0.141	0.087			
0.595	0.405	0.644	0.158	0.064			
0.615	0.385	0.690	0.175	0.046			
0.635	0.365	0.736	0.193	0.030			
0.655	0.345	0.782	0.211	0.019			
0.675	0.325	0.828	0.230	0.010			
0.695	0.305	0.874	0.250	0.005			
0.715	0.285	0.92	0.270	0.002			
0.735	0.265	0.966	0.290	0.000			
0.750	0.250	1.000	0.306	0.000			

Table C6: Relative permeability table for the carbonate section at RQI=0.080

RQI=				
Sor 0.220	SwC 0.43	Carbonate 6	Krw max 0.330	Kro max 0.848 q $\mathbf{1 . 5}^{3}$
Sw	So	SwD	Krw	kro
0.430	0.570	0.000	0	0.848
0.450	0.550	0.057	0.005	0.732
0.470	0.530	0.114	0.013	0.626
0.490	0.510	0.171	0.023	0.530
0.510	0.490	0.228	0.036	0.444
0.530	0.470	0.285	0.050	0.366
0.550	0.450	0.343	0.066	0.297
0.570	0.430	0.400	0.083	0.237
0.590	0.410	0.457	0.102	0.184
0.610	0.390	0.514	0.122	0.140
0.630	0.370	0.571	0.142	0.102
0.650	0.350	0.628	0.164	0.072
0.670	0.330	0.685	0.187	0.047
0.690	0.310	0.742	0.211	0.029
0.710	0.290	0.799	0.236	0.015
0.730	0.270	0.856	0.262	0.007
0.750	0.250	0.914	0.288	0.002
0.770	0.230	0.971	0.316	0.0001
0.780	0.220	1.000	0.330	0.000

Table C7: Relative permeability table for the carbonate section at RQI=0.060

RQI=						
Sor 0.200	SwC 0.52	Carbonate $\mathbf{7}$	Krw max 0.365	Kro max 0.844		
q	1.5		p			2.5
Sw	So	SwD	Krw	kro		
0.520	0.480	0.000	0	0.844		
0.540	0.460	0.071	0.007	0.701		
0.560	0.440	0.143	0.020	0.574		
0.580	0.420	0.214	0.036	0.462		
0.600	0.400	0.285	0.056	0.364		
0.620	0.380	0.357	0.078	0.280		
0.640	0.360	0.428	0.102	0.209		
0.660	0.340	0.499	0.129	0.150		
0.680	0.320	0.571	0.157	0.102		
0.700	0.300	0.642	0.188	0.065		
0.720	0.280	0.714	0.220	0.037		
0.740	0.260	0.785	0.254	0.018		
0.760	0.240	0.856	0.289	0.007		
0.780	0.220	0.928	0.326	0.001		
0.800	0.200	0.999	0.36438	0.000		

Table C8: Relative permeability table for the carbonate section at RQI=0.050

Figure C1: Relative permeability curve for the carbonate section at $\mathrm{RQI}=0.520$

Figure C3: Relative permeability curve for the carbonate section at RQI=0.25

Figure C2: Relative permeability curve for the carbonate section at $\mathrm{RQI}=0.380$

Figure C4: Relative permeability curve for the carbonate section at RQI=0.16

Figure C5:Relative permeability curve for the carbonate section at RQI=0.100

Figure C7: Relative permeability curve for the carbonate section at RQI=0.06

Figure C6: Relative permeability curve for the carbonate section at $\mathrm{RQ}=0.08$

Figure C8: Relative permeability curve for the carbonate section at RQI=0.05

