APPENDIX A-2. Techlog layouts

Figure A-1 : Well 1-32 layout—geochemical and conventional log analyzed by Techlog

Figure A-2: Well 1-32 layout—Porosity, Pc, Swi and Swirr at Pc_irr equal 20 bar

Figure A-3: Well 2-32 showing permeability by FZI-SWPHI and Coates compared to core. The second column on the right compares permeability by FZI-SWPHI and Coates permeability with core permeability on the third track from right

LAYOUT

Well(s): WELLINGTON KGS #1-32 Author: Mina FAZELALAVI Date: 11/7/2012

Project: Wellington2

Scale: 1:100

Figure A-4: Well 1-32 showing zone a and b. The first column on the right compares Coates permeability and permeability from FZI-SWP with core permeability

Figure A-5: Well 1-32 layout showing six zones based on similar FZI variation in each zone

Figure A-6: Equivalent zones in wells 147, 149, and Frankum#1 with equal FZI values corresponding to the six zones of Well 1-32

Figure A-7: Equivalent zones in wells Markley#2 and Frankum#1-32 with equal FZI values corresponding to the six zones of Well 1-32

Figure A-9: Equivalent zones in wells 1-28, 148, and Cole #2 with equal FZI values corresponding to the six zones of Well 1-32

Figure A-10: Equivalent zones in wells Cole #1, Peasel #1, 145, and 146 with equal FZI values corresponding to the six zones of Well 1-32

Techl_@g

Author: Mina FAZELALAVI Date: 11/2/2012

Project: Wellington2

Scale: 1:200

Figure A- 11: Well 1-28 showing average FZI in each of six zones in track 3 from right and comparing permeability from FZI-SWP method to Coates permeability

Figure A-12: Layout of Peasel #1 comparing permeability from the FZI-SWP method to Coates permeability and showing average FZI in each of the six zones

Figure A-13: Layout of Cole #1 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-14: Layout of Cole #2 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-1 6: Figure A-15: Layout of Meridith #3 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-17: Layout of Meridith #2 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-18: Layout of Meridith #4 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-19: Layout of Frankum # 1-32 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-20: Layout of Markley #2 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-21: Layout of Frankum #1 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-22: Layout of Well #149 showing average FZI in each of six zones and permeability from the FZI-SWP method:

Figure A-23: Layout of Well #147 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-24: Layout of Well #145 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-25: Layout of Well #146 showing average FZI in each of six zones and permeability from the FZI-SWP method

Figure A-26: Calculated initial water saturation using the Pc M.F.Alavi method compared with saturation from the NMR log

APPENDIX A-3. Relative Permeability Chat Section

	RQI=		0.320	
Sor	Swc	Chat	Krw max	Kro max
0.321	0.45	1	0.204	0.871
q	1.5		р	2.5
Sw	So	SwD	Krw	kro
0.450	0.550	0.000	0.000	0.871
0.470	0.530	0.087	0.005	0.694
0.490	0.510	0.174	0.015	0.540
0.510	0.490	0.262	0.027	0.408
0.530	0.470	0.349	0.042	0.298
0.550	0.450	0.436	0.059	0.208
0.570	0.430	0.523	0.077	0.137
0.590	0.410	0.610	0.097	0.083
0.610	0.390	0.698	0.119	0.044
0.630	0.370	0.785	0.142	0.019
0.650	0.350	0.872	0.166	0.005
0.670	0.330	0.959	0.191	0.000
0.679	0.321	1.000	0.204	0.000

	RQI=		0.280	
Sor	Swc	Chat	Krw max	Kro max
0.300	0.5	2	0.214	0.869
q	1.5		р	2.5
Sw	So	SwD	Krw	kro
0.500	0.500	0	0	0.869
0.520	0.480	0.1	0.007	0.668
0.540	0.460	0.2	0.019	0.498
0.560	0.440	0.3	0.035	0.356
0.580	0.420	0.4	0.054	0.242
0.600	0.400	0.5	0.075	0.154
0.620	0.380	0.6	0.099	0.088
0.640	0.360	0.7	0.125	0.043
0.660	0.340	0.8	0.153	0.016
0.680	0.320	0.9	0.182	0.003
0.700	0.300	1.0	0.214	0.000

Table B1: Relative permeability for the chat section at RQI=0.320

RQI=			0.245	
Sor	Swc	Chat	Krw max	Kro max
0.270	0.56	3	0.224	0.867
q	1.5		р	2.5
Sw	So	SwD	Krw	kro
0.560	0.440	0.000	0.000	0.867
0.580	0.420	0.118	0.009	0.634
0.600	0.400	0.235	0.026	0.443
0.620	0.380	0.353	0.047	0.292
0.640	0.360	0.471	0.072	0.177
0.660	0.340	0.588	0.101	0.094
0.680	0.320	0.706	0.133	0.041
0.700	0.300	0.824	0.167	0.011
0.720	0.280	0.941	0.204	0.001
0.730	0.270	1.000	0.224	0.000

Table B2: Relative permeability for the chat section at RQI=0.280

	RQI=		0.220	
Sor	Swc	Chat	Krw max	Kro max
0.240	0.6	4	0.232	0.865
q	1.5		р	2.5
Sw	So	SwD	Krw	kro
0.600	0.400	0.000	0	0.865
0.620	0.380	0.125	0.010262	0.620
0.640	0.360	0.250	0.029026	0.421
0.660	0.340	0.375	0.053324	0.267
0.680	0.320	0.500	0.082097	0.153
0.700	0.300	0.625	0.114735	0.074
0.720	0.280	0.750	0.150823	0.027
0.740	0.260	0.875	0.190058	0.005
0.760	0.240	1.000	0.232206	0.000

Table B3: Relative permeability for the chat section at RQI=0.245

Table B4: Relative permeability for the chat section at RQI=0.220

	RQI=		0.200	
Sor	Swc	Chat	Krw max	Kro max
0.210	0.66	5	0.240	0.864
q	1.5		р	2.5
Sw	So	SwD	Krw	kro
0.660	0.340	0.000	0.000	0.864
0.680	0.320	0.154	0.014	0.569
0.700	0.300	0.308	0.041	0.344
0.720	0.280	0.462	0.075	0.184
0.740	0.260	0.615	0.116	0.079
0.760	0.240	0.769	0.162	0.022
0.780	0.220	0.923	0.213	0.001
0.790	0.210	1.000	0.240	0.000

RQI=			0.175	
Sor	Swc	Chat	Krw max	Kro max
0.155	0.75	6	0.251	0.861
q	1.5		р	2.5
Sw	So	SwD	Krw	kro
0.750	0.250	0	0	0.861
0.770	0.230	0.210526316	0.02429	0.477
0.790	0.210	0.421052632	0.068701	0.220
0.810	0.190	0.631578947	0.126212	0.071
0.830	0.170	0.842105263	0.194317	0.009
0.845	0.155	1	0.251455	0.000

Table B5: Relative permeability for the chat section at RQI=0.200

	RQI=		0.145	
Sor	Swc	Chat	Krw max	Kro max
0.090	0.83	7	0.268	0.858
q	1.5		р	2.5
Sw	So	SwD	Krw	kro
0.830	0.170	0	0.000	0.858
0.850	0.150	0.25	0.034	0.418
0.870	0.130	0.5	0.095	0.152
0.890	0.110	0.75	0.174	0.027
0.910	0.090	1	0.268	0.000

Table B7: Relative permeability for the chat section at RQI=0.145

 Table B6: Relative permeability for the chat section at RQI=0.175

	RQI=		0.120	
Sor	Swc	Chat	Krw max	Kro max
0.030	0.930	8	0.287	0.855
q	1.5		р	2.5
Sw	So	SwD	Krw	kro
0.930	0.070	0	0.000	0.855
0.950	0.050	0.5	0.101	0.151
0.970	0.030	1	0.287	0.000

Table B8: Relative permeability for the Ccat section at RQI=0.120

APPENDIX A-4. Relative Permeability Carbonate Section

Table C1: Relative permeability table for the carbonate section at RQI=0.520

	RQI=		0.520	
Sor	Swc	Carbonate	Krw max	Kro max
0.364	0.08	1	0.172	0.880
q	1.5		р	2.5
Sw	So	SwD	Krw	kro
0.080	0.920	0.000	0	0.880
0.100	0.900	0.036	0.001	0.803
0.120	0.880	0.072	0.003	0.730
0.140	0.860	0.108	0.006	0.661
0.160	0.840	0.144	0.009	0.597
0.180	0.820	0.180	0.013	0.536
0.200	0.800	0.216	0.017	0.479
0.220	0.780	0.252	0.022	0.426
0.240	0.760	0.288	0.027	0.377
0.260	0.740	0.324	0.032	0.331
0.280	0.720	0.359	0.037	0.289
0.300	0.700	0.395	0.043	0.250
0.320	0.680	0.431	0.049	0.215
0.340	0.660	0.467	0.055	0.182
0.360	0.640	0.503	0.061	0.153
0.380	0.620	0.539	0.068	0.127
0.400	0.600	0.575	0.075	0.104
0.420	0.580	0.611	0.082	0.083
0.440	0.560	0.647	0.090	0.065
0.460	0.540	0.683	0.097	0.050
0.480	0.520	0.72	0.105	0.037
0.500	0.500	0.755	0.113	0.026
0.520	0.480	0.791	0.121	0.018
0.540	0.460	0.827	0.129	0.011
0.560	0.440	0.863	0.138	0.006
0.580	0.420	0.899	0.147	0.003
0.600	0.400	0.935	0.156	0.001
0.620	0.380	0.971	0.165	0.0001

Table C2: Relative permeability	table for the carbonate
section at RQI=0.380	

	RQI=		0.380	
Sor	Swc	Carbonate	Krw max	Kro max
0.342	0.11	2	0.192	0.874
q	1.5		р	2.5
Sw	So	SwD	Krw	kro
0.110	0.890	0.000	0	0.874
0.130	0.870	0.037	0.001	0.797
0.150	0.850	0.073	0.004	0.723
0.170	0.830	0.110	0.007	0.654
0.190	0.810	0.146	0.011	0.589
0.210	0.790	0.183	0.015	0.528
0.230	0.770	0.219	0.020	0.471
0.250	0.750	0.256	0.025	0.418
0.270	0.730	0.292	0.030	0.369
0.290	0.710	0.329	0.036	0.323
0.310	0.690	0.365	0.042	0.281
0.330	0.670	0.402	0.049	0.242
0.350	0.650	0.438	0.056	0.207
0.370	0.630	0.475	0.063	0.175
0.390	0.610	0.511	0.070	0.146
0.410	0.590	0.548	0.078	0.120
0.430	0.570	0.584	0.086	0.097
0.450	0.550	0.621	0.094	0.077
0.470	0.530	0.657	0.102	0.060
0.490	0.510	0.694	0.111	0.045
0.510	0.490	0.73	0.120	0.033
0.530	0.470	0.767	0.129	0.023
0.550	0.450	0.803	0.138	0.015
0.570	0.430	0.840	0.148	0.009
0.590	0.410	0.876	0.157	0.005
0.610	0.390	0.913	0.167	0.002
0.630	0.370	0.949	0.178	0.001
0.650	0.350	0.986	0.188	0.00002
0.658	0.342	1.000	0.192	0.000

Table C3: Relative permeability table for the carbonate section at RQI=0.250

Table C4: Relative permeability table for the carbonate section at RQI=0.160

	RQI=		0.250			
Sor	Swc	Carbonate	Krw max	Kro max	Sor	Γ
0.315	0.15	3	0.222	0.867	0.278	
q	1.5		р	2.5	q	
Sw	So	SwD	Krw	kro	Sw	
0.150	0.850	0.000	0	0.867	0.220	
0.170	0.830	0.037	0.002	0.789	0.240	
0.190	0.810	0.075	0.005	0.714	0.260	
0.210	0.790	0.112	0.008	0.644	0.280	
0.230	0.770	0.149	0.013	0.579	0.300	
0.250	0.750	0.187	0.018	0.517	0.320	
0.270	0.730	0.224	0.024	0.460	0.340	
0.290	0.710	0.261	0.030	0.406	0.360	
0.310	0.690	0.299	0.036	0.357	0.380	
0.330	0.670	0.336	0.043	0.311	0.400	
0.350	0.650	0.374	0.051	0.269	0.420	
0.370	0.630	0.411	0.059	0.231	0.440	
0.390	0.610	0.448	0.067	0.196	0.460	
0.410	0.590	0.486	0.075	0.165	0.480	
0.430	0.570	0.523	0.084	0.136	0.500	
0.450	0.550	0.560	0.093	0.111	0.520	
0.470	0.530	0.598	0.103	0.089	0.540	
0.490	0.510	0.635	0.112	0.070	0.560	
0.510	0.490	0.672	0.122	0.053	0.580	
0.530	0.470	0.710	0.133	0.039	0.600	
0.550	0.450	0.75	0.143	0.028	0.620	
0.570	0.430	0.784	0.154	0.019	0.640	
0.590	0.410	0.822	0.165	0.012	0.660	
0.610	0.390	0.859	0.177	0.006	0.680	
0.630	0.370	0.897	0.189	0.003	0.700	
0.650	0.350	0.934	0.200	0.001	0.720	
0.670	0.330	0.971	0.213	0.0001	0.722	
0.685	0.315	1.000	0.222	0.0000		

	RQI=		0.160	
Sor	Swc	Carbonate	Krw max	Kro max
0.278	0.22	4 0.259		0.860
q	1.5		р	2.5
Sw	So	SwD	Krw	kro
0.220	0.780	0.000	0	0.860
0.240	0.760	0.040	0.002	0.777
0.260	0.740	0.080	0.006	0.699
0.280	0.720	0.120	0.011	0.625
0.300	0.700	0.159	0.017	0.557
0.320	0.680	0.199	0.023	0.493
0.340	0.660	0.239	0.030	0.434
0.360	0.640	0.279	0.038	0.380
0.380	0.620	0.319	0.047	0.329
0.400	0.600	0.359	0.056	0.283
0.420	0.580	0.399	0.399 0.065	
0.440	0.560	0.438	0.075	0.203
0.460	0.540	0.478	0.086	0.169
0.480	0.520	0.518	0.518 0.097	
0.500	0.500	0.558	0.108	0.112
0.520	0.480	0.598	0.120	0.088
0.540	0.460	0.638	0.132	0.068
0.560	0.440	0.677	0.145	0.051
0.580	0.420	0.717	0.158	0.037
0.600	0.400	0.757	0.171	0.025
0.620	0.380	0.80	0.185	0.016
0.640	0.360	0.837	0.837 0.199	
0.660	0.340	0.877 0.213		0.005
0.680	0.320	0.917 0.228		0.002
0.700	0.300	0.956 0.243 0.		0.00034
0.720	0.280	0.996	996 0.258 0.00	
0.722	0.278	1.000	0.259 0.00	

 Table C5: Relative permeability table for the carbonate section at
 Table C6: Relative permeability table for the carbonate

 RQI=0.100

section at RQI=0.080

RQI= 0.100					RQI= 0.080				
Sor	Swc	Carbonate	Krw max	Kro max	Sor	Swc	Carbonate	Krw max	Kro max
0.250	0.315	5	0.306	0.852	0.220	0.43	6	0.330	0.848
q	1.5		р	2.5	q	1.5		р	2.5
Sw	So	SwD	Krw	kro	Sw	So	SwD	Krw	kro
0.315	0.685	0.000	0	0.852	0.430	0.570	0.000	0	0.848
0.335	0.665	0.046	0.003	0.757	0.450	0.550	0.057	0.005	0.732
0.355	0.645	0.092	0.009	0.669	0.470	0.530	0.114	0.013	0.626
0.375	0.625	0.138	0.016	0.588	0.490	0.510	0.171	0.023	0.530
0.395	0.605	0.184	0.024	0.512	0.510	0.490	0.228	0.036	0.444
0.415	0.585	0.230	0.034	0.443	0.530	0.470	0.285	0.050	0.366
0.435	0.565	0.276	0.044	0.380	0.550	0.450	0.343	0.066	0.297
0.455	0.545	0.322	0.056	0.322	0.570	0.430	0.400	0.083	0.237
0.475	0.525	0.368	0.068	0.270	0.590	0.410	0.457	0.102	0.184
0.495	0.505	0.414	0.081	0.224	0.610	0.390	0.514	0.122	0.140
0.515	0.485	0.460	0.095	0.182	0.630	0.370	0.571	0.142	0.102
0.535	0.465	0.506	0.110	0.146	0.650	0.350	0.628	0.164	0.072
0.555	0.445	0.552	0.125	0.114	0.670	0.330	0.685	0.187	0.047
0.575	0.425	0.598	0.141	0.087	0.690	0.310	0.742	0.211	0.029
0.595	0.405	0.644	0.158	0.064	0.710	0.290	0.799	0.236	0.015
0.615	0.385	0.690	0.175	0.046	0.730	0.270	0.856	0.262	0.007
0.635	0.365	0.736	0.193	0.030	0.750	0.250	0.914	0.288	0.002
0.655	0.345	0.782	0.211	0.019	0.770	0.230	0.971	0.316	0.0001
0.675	0.325	0.828	0.230	0.010	0.780	0.220	1.000	0.330	0.000
0.695	0.305	0.874	0.250	0.005					
0.715	0.285	0.92	0.270	0.002					
0.735	0.265	0.966	0.290	0.000					
0.750	0.250	1.000	0.306	0.000					
					 -				

RQI=0.060

 Table C7: Relative permeability table for the carbonate section at
 Table C8: Relative permeability table for the carbonate section

 at RQI=0.050

	RQI= 0.0				
Swc	Carbonate	Krw max	Kro max		
0.52	7	7 0.365			
1.5		р			
So	SwD	Krw	kro		
0.480	0.000	0	0.844		
0.460	0.071	0.007	0.701		
0.440	0.143	0.020	0.574		
0.420	0.214	0.036	0.462		
0.400	0.285	0.056	0.364		
0.380	0.357	0.078	0.280		
0.360	0.428	0.102	0.209		
0.340	0.499	0.129	0.150		
0.320	0.571	0.157	0.102		
0.300	0.642	0.188	0.065		
0.280	0.714	0.220	0.037		
0.260	0.785	0.254	0.018		
0.240	0.856	0.289	0.007		
0.220	0.928	0.326	0.001		
0.200	0.999	0.36438	0.000		
	0.52 1.5 So 0.480 0.460 0.440 0.420 0.400 0.380 0.360 0.340 0.320 0.320 0.320 0.300 0.280 0.260 0.240 0.220	0.52 7 1.5 So SwD 0.480 0.000 0.480 0.000 0.460 0.071 0.440 0.143 0.420 0.214 0.400 0.285 0.380 0.357 0.360 0.428 0.340 0.499 0.320 0.571 0.300 0.642 0.280 0.714 0.260 0.785 0.240 0.856 0.220 0.928	0.52 7 0.365 1.5 p So SwD Krw 0.480 0.000 0 0.480 0.071 0.007 0.440 0.143 0.020 0.440 0.143 0.020 0.440 0.214 0.036 0.420 0.214 0.036 0.420 0.285 0.056 0.380 0.357 0.078 0.360 0.428 0.102 0.360 0.428 0.102 0.340 0.499 0.129 0.320 0.571 0.157 0.300 0.642 0.188 0.280 0.714 0.220 0.260 0.785 0.254 0.240 0.856 0.289 0.220 0.928 0.326		

	RQI=	0.050			
Sor	Swc	Carbonate	Krw max	Kro max	
0.174	0.660	8	0.389	0.841	
q	1.5		р	2.5	
Sw	So	SwD	Krw	kro	
0.660	0.340	0.000	0	0.841	
0.680	0.320	0.121	0.016	0.609	
0.700	0.300	0.242	0.046	0.421	
0.720	0.280	0.363	0.085	0.273	
0.740	0.260	0.483	0.131	0.161	
0.760	0.240	0.604	0.183	0.083	
0.780	0.220	0.725	0.240	0.033	
0.800	0.200	0.846	0.303	0.008	
0.820	0.180	0.967	0.370	0.000	
0.826	0.174	1.000	0.389	0.000	

Figure C1: Relative permeability curve for the carbonate section at RQI=0.520

Figure C2: Relative permeability curve for the carbonate section at RQI=0.380

Figure C3: Relative permeability curve for the carbonate section at RQI=0.25

Figure C4: Relative permeability curve for the carbonate section at RQI=0.16

Figure C6: Relative permeability curve for the carbonate section at RQI=0.08

Figure C7: Relative permeability curve for the carbonate section at RQI=0.06

Figure C8: Relative permeability curve for the carbonate section at RQI=0.05

