Effect of Carbon Dioxide on the Cathodic Performance of Solid Oxide Fuel Cells

S.N.Basu, and U.B.Pal Division of Materials Science and Engineering Boston University, Boston, MA -2215

Presented at the 2014 SECA Meeting, Pittsburgh PA July 23, 2014

Outline

- Motivation
- Experimental
 - Sr surface segregation
 - Effect of CO₂ on Sr segregation in LSCF
- DFT results
- Implication for SOFC cathodes

Motivation

Advantages

- Long operation: >50,000 hours
- High Efficiency: >65% with cogeneration
- Fuel Flexibility

Challenges

- High temperature operation
- Thermal expansion mismatch
- Sealing difficulty cross leaks
- Degradation of stack components

One potential degradation mechanism is degradation of cathode materials (eg, LSCF.) by gas phase impurities such as CO_2 and H_2O , including from cross leaks.

Questions

- What happens to the surface of the LSCF cathode upon exposure to air side impurities such as CO₂ and H₂O present in trace quantities?
- What happens to the cathode when there are larger scale accidental cross-leaks from the anodic side due to compromised seals and/or leaks from large numbers of pinholes?
- What are the implications for cell performance including long term performance?

Experimental: Thin Film Deposition LSCF-6428 on $NdGaO_3$ (NGO)

 Pulsed Laser Deposition (PLD) at Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL).

Thin Film Characterization LSCF-6428 on NGO

XRD FIB-SEM NGO(220) carbon NGO(110) LSCF (002) Log(counts) LSCF NGO(330) LSCF (001) 250nm Interface LSCF (003) Substrate Արսելու և պարտեղություններ այլ հայությանի տեղեն Մենիսիայի (ել ու դել այնը տեղանել և Two-theta (deg)

X-ray diffraction shows good alignment and the SEM image shows clean interfaces at the film/substrate.

Total Reflection X-ray Fluorescence (TXRF)

TXRF working principle

Real-Time TXRF Analyses of LSCF-6428

Mechanisms of Enhanced Kinetics of Sr Surface Segregation

- Step 1. Sr from LSCF lattice $+\frac{1}{2}O_2 \rightarrow SrO$ (by Sr Surface Segregation)
- Step 2. $SrO + CO_2 \rightarrow SrCO_3 \stackrel{2}{} \Delta G^{\circ} = -230,290 + 161.43T (J/mol)$

Bulk Phase

Bulk Phase with Oxygen Vacancy

Surface Phase

Surface Phase with Oxygen Vacancy

Surface segregation in the absence of CO₂

Surface carbonate formation

$$La_{0.75}Sr_{0.25}Co_{0.25}Fe_{0.75}O_{3-\delta} + \frac{1}{16}O_2 + \frac{1}{8}CO_2 \rightarrow La_{0.75}Sr_{0.125}Co_{0.25}Fe_{0.75}O_{3-\delta} + \frac{1}{8}SrCO_3$$

Atomic Force Microscope (AFM) Analyses

	Roughness RMS (nm)	Number of Particles per μm²	Average Base Diameter of Particles (µm)	Surface Area Coverage Ratio (%)
30% CO ₂	5.59	10.25	0.276	61.3%
"CO ₂ -free"	4.18	12.63	0.111	12.2%

HAXPES analysis of Sr3d_{3/2} & Sr3d_{5/2} orbitals

- hv=2140eV.
- Doublet from spin orbit splitting

 Surface Sr 3d signal consistent with:

Sr-O 133.0eV

Sr-CO₃ 134.0eV*

*P.A.W van der Heide, Surf. Interface Anal. 2002

Consensus on Sr segregation

- Sr segregation occurs in the case of LSCF
- Need to distinguish between enrichment/depletion due to the usual space-charge effect present at grain boundaries and surfaces of all ionic materials, and actual precipitation and formation of second phases.
- SrO formation indeed occurs in the case of LSCF.

More Pic (if needed)

Feedback System

View inside the hutch

View outside the hutch

Monitoring the Temp

Additional slides (for questions)

Energy Resolving Fluorescence

Method of TXRF Analysis

 $N(\theta) \propto I(\theta) \qquad \qquad N_{Sr} = \alpha \cdot I_{Sr} \quad N_{La} = \beta \cdot I_{La}$

Want
$$R_{Sr/(Sr+La)} = \frac{N_{Sr}}{N_{Sr} + N_{La}}$$

$$R_{Sr/(Sr+La)} = \frac{N_{Sr}}{N_{Sr} + N_{La}} = \frac{I_{Sr}}{I_{Sr} + \frac{\beta}{\alpha}I_{La}} \qquad \text{Define C} = \frac{\beta}{\alpha}$$

$$C = \frac{I_{Sr}(1 - R_{Sr/(Sr+La)})}{R_{Sr/(Sr+La)}I_{La}} \quad \text{For } \theta > \theta_c, \ R_{Sr/(Sr+La)} = 0.4$$

Can now plot $R_{Sr/(Sr+La)}$ for all angles.

Reason for SSS

- The different vacancy-formation energies of the components.
- The elastic strain energy due to lattice distortion around a defect.
- The effect of the ambient atmosphere.
- The macroscopic electrostatic potential, which appears as a consequence of the locally non-stoichiometric charged species.
- The effect of surface energy.
- The energies due to the interactions between the defects

2 Pathways for Oxygen Reduction Reaction...

Patterned electrode experiments (LSCF- 6428)

"2D Numerical Model for Identification of Oxygen Reduction Reaction Mechanisms in Patterned Cathodes of La $_{0.6}$ Sr $_{0.4}$ Co $_{0.2}$ Fe $_{0.8}$ O $_{3-\delta}$ ", L.J.Miara, S.N. Basu, U.B.Pal, and S.Gopalan, *J.Electrochem.Soc.*, 159 (8) F419-F425 (2012)

Surface diffusion versus bulk diffusion

"2D Numerical Model for Identification of Oxygen Reduction Reaction Mechanisms in Patterned Cathodes of La _{0.6}Sr _{0.4}Co _{0.2}Fe_{0.8}O ₃₋₆", L.J.Miara, S.N. Basu, U.B.Pal, and S.Gopalan, *J.Electrochem.Soc.*, 159 (8) F419-F425 (2012)

Implications for SOFCs

- Prior work shows that bulk diffusion is more important at lower oxygen partial pressures, presumably due to higher oxygen vacancy concentrations.
- Prior work also shows that at lower temperatures, bulk diffusion is more dominant, in contradiction with expectations.
- The present work on the surface chemistry of Sr segregation and the attendant SrO and SrCO₃ provides a plausible explanation.
- Does the formation of these second phases inhibit surface diffusion thereby forcing the oxygen transport through the bulk pathway even at lower temperatures?
- Experimental work underway to answer these questions.

Ongoing work

- Cathodes with lower Sr dopant levels and alternate cathode materials (e.g. BSCF)
- Impedance measurements in air passed through CO₂ getter and comparison to CO₂ containing atmospheres
- Time studies to understand longer term effects

Acknowledgments

- This work was funded through DOE's SECA program.
- Helpful discussions with Dr.Patcharin Burke, Dr.Briggs White, Dr. Harry Abernathy, and Dr. Kirk Gerdes are acknowledged.
- EMSL personnel Dr. Tiffany Kaspar and Dr. Lax Saraf are acknowledged for fabrication of thin films.