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ABSTRACT STRONG CAPILLARY RETENTION OF WATER IN

SHALE
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OBJECTIVES

* Understand coupling between water imbibition and gas
counterflow in shales in order to help identify approaches to
Improving production.

= Effective diffusion coefficients
in the range of 9E-9 to 3E-8
m2/s were obtained through
modeling of the diffusion
process. These values are
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scCO,-water foam testing. (a) foam generator, rheometer, and viewing
cell (red outline). (b) images of foam entering viewing window. (c)
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- Understand the effectiveness of low-water fracturing fluids consistent with other e Close-up view of foam with ~10 um scCO, bubble sizes.
on shale gas/oil mobilization, and improve performance of measurements on low-porosity '° "
fracturing fluids. rocks. Modeled saturation distribution SUMMARY

: : : at 1 day of vapor diffusion into
» Experiments and simulations Y b

_ _ ) _ _ initially dry shale lamina
SHALE SAMPLES AND MEASUREMENTS of diffusion in anisotropic shale  (quarter of the domain shown).

» Hysteresis in water imbibition-drainage is important, and
very high capillary pressures required to percolate gas
through water-blocked shale have been quantified.

are underway.

Most of our laboratory measurements
on gas shales have been obtained on
samples from wells in the Devonian

Woodford Shale.

» | ong times are required to hydraulically equilibrate shales
because of their very low permeabilities and low effective
diffusion coefficients.

INFLUENCES OF WATER IMBIBITION
THROUGH MICROFRACTURE NETWORKS

* Predominantly vertical hydraulic
fractures supply fracturing fluids
to primarily horizontally oriented
microfractures in shales.

» Gravity drainage of hydraulic fractures above horizontal
wells is important in facilitating gas production.

» A supercritical CO2 foam is being tested as a low-water
alternative fluid for hydraulic fracturing.
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