Pilot-Scale Testing of an Integrated Circuit for the Extraction of Rare Earth Minerals and Elements from Coal and Coal Byproducts Using Advance Separation Technologies

Honaker, R.Q.¹, Groppo, J.¹, A. Noble², J.A. Herbst², G.H. Luttrell³, R.H. Yoon³

- 1) Department of Mining Engineering | | University of Kentucky | | Lexington, KY
- 2) Department of Mining Engineering || West Virginia University || Morgantown, WV
- 3) Department of Mining & Minerals Engineering | Virginia Tech | Blacksburg, VA

Background

- A sustainable supply of Rare Earth Elements is crucial for several high-tech industries and defense applications.
- Current domestic sources are coming under increased pressure from poor prices.
- Byproduct recovery from coal has potential, but needs critical separation technology.
- OBJECTIVE: Develop, design, and demonstrate a ¼ ton per hour pilot-scale system for the efficient, low-cost, and environmentally benign recovery of REEs from coal.

Preliminary Resource/Reserve Assessment

- Examined the REE content of 20 Appalachian Preparation Plants
- Results show that REE byproducts from these plants can supply 10,000 tons per year of REES (50% of US Demand)
- Interestingly, coal REE's are particularly enriched in "heavy" REEs

Heavy to Light Ratio for Samples from Plant Characterization Campaign

REE Elemental Distribution

Rare Earth Byproduct Valuation

- "Rare Earths" is a plural concept.
- Rare earth prices are extremely volatile.
- Despite pessimistic trends, inherent REE content is similar to other base metals.

Valuation of a High Quality Central App Coal

Material Characterization

Must first identify REE Forms to design proper processing route
Mineral Association | | Ion substitution | | Organic Association

Scanning Electron Microscopy (SEM)

SEM was used to examine individual particles to identify minerals

EDX spectra confirm distinct mineral grains

Focused Ion Beam Milling

FIB used to extract single REE particle

Advanced Separation Technologies

Hydrophobic-Hydrophillic Separation (HHS)

- Patented process to separate ultra-fine particles (<10 micron)
- Proven success in coal (pilot-scale) and base metals (lab-scale)

Process	Grade (%Cu)		Copper	Separation
	Concentrate	Tailings	(%)	Efficiency (%)
	26.7	0.13	90.6	87.3
HHS	24.3	0.10	94.3	88.9
	24.9	0.08	92.8	90.4

HHS Separation of <12 um Chalconvrite

HHS Process Flow Diagram

Flotation

- Conventional industrial process for fine particle separation.
- Proven success in REE concentration
- Preliminary results show that high recovery can be obtained.
- Further tests will optimize selectivity.

Flotation results for coal/monazite system

Proposed Flowsheet

Advantages

- Use of low-cost physical separations in the front end will reduce the need for costly chemical separation.
- Additional coal recovery will further support process economics
- Process is readily deployable for a number of pre-combustion feedstocks.

Conclusions & Future Work

Process Targets

- REE Concentrate Grade = 2% by weight
- Total REE Recovery > 50% by weight
- Total Production Costs <\$20 per dry Feed Ton
- Environmental: no emissions beyond those permitted

Future Work

- Characterization and Separation Data
- Flowsheet Optimization
- Feasibility Studies
- Design and Deployment

Contact

Rick Q. Honaker | | rick.honaker@uky.edu