

LARGE PILOT SCALE TESTING OF LINDE/BASF POST-COMBUSTION CO₂ CAPTURE TECHNOLOGY AT THE ABBOTT COAL-FIRED POWER PLANT

DOE/NETL Funding Award DE-FE0026588 *Phase I Close-out Meeting November 17, 2017*

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PROJECT MANAGEMENT AND PARTICIPANTS

Objectives for Phase 1

All have been met

- Defining the project in detail
- Formulating a project management plan
- Developing a preliminary plant design to enable cost estimates within ± 20%
- Obtaining a host site agreement and other financial commitments to prepare a detailed Phase 2 application

Phase 1 Team

Well defined roles based on relevant capabilities

Project Timeline and Milestones

Project Milestones and Tasks

All completed on-time and within budget

Budget Period	Task / Subtask	Milestone Description	Planned Completion	Actual Completion	Verification Method	Status / Comments
1	1	Updated Project Management Plan	10/1/2015	10/1/2015	Project Management Plan File	Completed
1	1	Kick-off Meeting	12/30/2015	12/10/2015	Presentation File	Completed
1	2	TEA completed	3/31/2016	3/31/2016	Presentation File	Completed
1	3	EH&S Study Completed	3/31/2016	3/31/2016	Presentation File	Completed
1	5	Phase I Topical Report Completed	3/31/2016	3/31/2016	Presentation File	Completed
1	1	Host Site Agreement Completed	6/30/2016	6/25/2016	Signed Agreement	Completed

D - BASE

Phase I Funds

Under budget and exceeded cost share requirements

- Under original total budget of \$1.3 MM
 - Cost share of ~25%, exceeded 20% requirement

Key Personnel

Organization	Role	Key Personnel
University of Illinois	Host Site / Technology Evaluation	Dr. Kevin C OBrien Dr. Yongqi Lu
The Linde Group	Technology Developer, ISBL Engineering, Procurement, Construction	Dr. Krish Krishnamurthy Torsten Stoffregen Makini Byron
BASF	Technology Developer, basic design and solvent management	Dr. Sean Rigby
Affiliated Engineers	OSBL Engineering	David Guth, LEED AP

Regional & Global Test Bed for CCUS

Concentration of natural resources and intellectual capital

Linde

Prairie Research Institute

OVERVIEW OF TECHNOLOGY DEVELOPMENT

BASF OASE® blue technology development

Linde adopted and optimized for PCC applications

Technology performance to date

PP1= Niederaussem; PP2=NCCC

Test/Performance Attribute	PCC Pilot Plant	Key results and current achievement against targets	Remarks
Solvent selection	PP1	Two solvents screened following benchmark testing with MEA. OASE® blue selected	Solvent selected to optimize performance, emissions, and cost
CO ₂ capture rate	PP1, PP2	Recovery $> 90\%$ as per target	Achieved
CO ₂ purity	PP1, PP2	Purity > 99.9% (dry basis) as per target	Achieved
Plant capacity	PP1, PP2	 PP1: 7.2 tonnes CO₂/day (0.45 MWe) PP2: >25 tonnes CO₂/day (>1.5 MWe per design target, >15,500 lb/hr flue gas) 	Achieved. Higher capacity testing performed at PP2 – 10 days in May-June 2015. An additional week of higher capacity testing was conducted in Nov. 2015.
Regenerator steam consumption	PP1, PP2	~ 2.8 GJ/tonne-CO ₂ (Intrinsic energy requirement)	Achieved (20% lower than MEA). ~ 2.7 GJ/tonne-CO ₂ observed in PP2
Cyclic capacity	PP1, PP2	>20% compared to MEA	Achieved
Emissions control testing	PP1, PP2	Identified and validated BASF/RWE patented dry bed configuration of water wash unit to reduce emissions as per design target. Aerosol control configuration in flue gas stream tested and evaluated	Incorporated in PP2 design. Detailed isokinetic measurements (flue gas & treated gas) performed to confirm effectiveness of emissions control options (such as dry bed configuration) for high aerosol content flue gas, in particular flue gas with a high nanoparticle size particle density.
Regenerator operating pressure	PP2	Pressure up to 3.4 Bara	Achieved & confirmed benefits for compressed CO_2 production. Pressure parametric testing completed in Nov. 2015. Long-duration testing was performed at 3.4 bara.
Materials of construction	PP1	Wide range of materials (CS, SS, concrete with PP inliner, FRP, etc) tested in sections and in coupons	Enabled optimized material specifications for PP2 and for commercial cases
Validation of unique process features	PP1, PP2	 High capacity packing in the absorber column Blower downstream of absorber (PP2) Unique two-phase flow reboiler design (PP2) Gravity-driven interstage cooler (PP2) 	Design improvements for reducing the energy required for solvent regeneration through heat integration were identified. Stripper interstage heater (SIH) design can result in ~2.3 GJ/tonne CO_2 .
Long-term testing for solvent stability assessment	PP1, PP2	 PP1: >26,000 hrs (>3 years) of testing PP2: ~ 1,500 hrs of continuous testing under steady state conditions 	 PP1: Achieved PP2: Long term testing successfully completed from May through July 2016.

LARGE PILOT DESIGN AND TEST APPROACH

NATIONAL

TECHNOLOGY

U.S. DEPARTMENT OF

Affiliated Engineers

Overview of Capture System for Large Pilot Plant

Technology features in large pilot design

Preliminary CO₂ capture plant design basis

Large pilot captures 300 tons/day CO₂

CO₂ product:

- 272 MTPD (300 tons/day)
- 90% capture efficiency
- 99.7+% purity (<100 ppmv O₂)
- ~1.2 bars delivery pressure at site boundary

Flue gas processed:

- Target capture plant capacity: 15 MWe
- Target flue gas flow rate: 77.6 tonnes/hr(wet)
- Flue gas composition (straight): CO₂ 5.7mol%(wet)

(with recycle): CO2 10.3 mol%(wet);

NATIONAL

BASE

Operating requirements:

- Regenerator LP steam (3.4-4.8 barg): 17.0 tonnes/hr
- Electrical power: max 462 kW
- Cooling water: 132 gpm

Test Cases Planned in Large Scale Pilot

Recycling important to increase level of CO₂

		Flue Gas Specification		Treated Gas	Total Captured CO ₂
Description	Unit	Case 1 (Straight FG Flow)	Case 2/3 (FG w/ CO ₂ recycle)	Case 2/3 (FG w/ CO ₂ recycle)	Case 3 (CO ₂ recycle at higher P)
Operating pressure	bar (psi)	1.0 (14.9)	1.0 (14.9)	1.0 (14.9)	3.4 (49.3)
Operating temperature	°F (°C)	200 (93.3)	200 (93.3)	104 (40)	104 (40)
Total Volumetric Flow	(Nm ³ /h)	78,353	65,621	63,424	1,833
Total Mass Flow	lb/hr (kg/hr)	163,321 (74,081)	163,903 (74,345)	142,967 (64,849)	22,841 (10,361)
Composition:		-			
CO ₂	<u>mol</u> %	5.7	10.4	1.1	97.7
N ₂	<u>mol</u> %	68.8	72.7	78.7	0.0
Ar	<u>mol</u> %	0.8	0.9	0.9	0.0
O_2	<u>mol</u> %	10.3	10.9	11.8	0.0
H ₂ O	<u>mol</u> %	14.4	5.2	7.5	2.2
SO_2	ppmv	68.0 (max 200)	64.0	N/A	N/A
SO ₃	ppmv	tbd	tbd	N/A	N/A
NO _x	ppmv	tbd	200	N/A	N/A
Chlorides	ppmv	tbd	tbd	N/A	N/A
Dust	lb/SCF	tbd	tbd	N/A	N/A

Case 1: <u>Treat as-received flue gas:</u> containing low concentration CO₂ (5.7%mol)

Case 2: <u>Treat flue gas with CO_2 recycle</u>: to increase the CO_2 concentration from 5.7%mol (without recycle) to 10.3%mol (with recycle).

Case 3: <u>Treat flue gas with CO₂ recycle</u> and stripping operation at a higher pressure

NB: 2016 measured CO2 concentration at Abbott (two coal boilers at full load) was 9.2% CO2 as opposed to 5.7% which was the design of the plant. This is more in line with the pulverized coal plants and recycle option in this case can increase the flue gas CO2 concentration to 13%, typical of PC boilers.

Large Pilot Analysis Points

Frequent analysis through online and manual sample points

INTEGRATION WITH POWER PLANT

Host Site: Abbott Power Plant

Ideal site for large scale pilot testing of coal and natural gas

- Seven boilers total: three are coal based (Chain-grate stoker design) others natural gas
- Coal side has completely separate treatment system from natural gas side
- For testing will run two coal boilers
- Illinois high sulfur coal is burned
- Electrostatic precipitators and a wet Flue Gas Desulfurizer (FGD) in place
- Tradition of evaluating new emission technologies
- Tradition of showcasing technologies to other power plants and education groups

Major advantage that University owns and operates Host Site

Site for Carbon Capture Plant Established and Evaluated

Located close to Abbott Power Plant

Extract flue gas POST CEMS Unit

Integration of Pilot Plant with Utilities at Host Site

Plot Plan for Capture Plant

49 m x 46 m (160 ft. x 150 ft.) footprint

No modifications to existing plant combustion system (i.e. boilers) considered a major risk reduction by Abbott Power Plant

Linde

ENVIRONMENTAL, HEALTH AND SAFETY ANALYSIS

Potentially Hazardous Materials

Engineering controls and/or safeguards in place to limit possible consequences

Safeguards

- Bulk heat stable salts removal options
 Anti-foaming and anti-corrosion agents available, if needed
- 2) Module shelters to redirect rain water
 - Impermeable pads under modules and columns
 - Sloped floor drainage to a sump
- 3) Water reuse/recycle considered
 - Neutralization of waste water before disposal, if needed
- 4) Caustic tank surrounded by 6' wall
- 5) Relatively small volumes of solvent
 - Solvent handling guidance from BASF
- 6) Emission Control System, including patented "dry bed" configuration
 - Treated gas vented at 170'
- 7) Storage tank surrounded by 3' wall
 - Amine lines welded to prevent leakages

•	5 Very High						
rrenc	4 High						
of Occu	3 M ed ium		• Accumulated heat stable salts		• Carryover of amines		
bability	2 Low		• Surface runoff to ground	• Disposal of process condensate from DCC			
Pro	l Very Low			 Improper handling of caustic 4 Improper handling of solvent 5 	• Loss of containment		
Probability Impact Grid		l Very Low	2 Low	3 Medium	4 High	5 Very High	
Impact Grid		Impact of Risk					

Affiliated Engineers

NATIONAL

TECHNOLOGY

- BASF

Linde

Key Environmental Health & Safety Risks

Risk mitigation factors identified for design, build and operate activities

Safety and Health Risk	Mitigation Approach
Plant operations safety	 Applied Linde's comprehensive "Safety by Design" guidelines Safety and operator training
Safety issues arising from improper design and operations/maintenance requirements not identified at design	 Implementation of Linde Gas Standard Requirements Comprehensive Hazard and Operability study (HAZOP) Comprehensive Process Safety Reviews (PSR)
Process operations safety	 Safety instrumented systems Flow restriction and safety interlocks Automatic safe shutdown capability incorporated in the large pilot plant design Emergency power supply
Chemical exposure	 Multiple eye wash and emergency showers Safe locations of vents and blow down Proper sizing of relief valve and similar devices Catch pots for capturing any leaks during maintenance
Solvent handling	• Rigorous operating procedures including mandatory usage of Personal Protection Equipment (PPE)
Solvent storage (regulatory requirements)	• OSHA and EPA regulated chemicals with threshold storage volume for process safety management checked. Confirmed solvent is not part of the classified chemicals list with threshold volume.

TECHNO-ECONOMIC ANALYSIS

Based on 1.5 MWe pilot test and Aspen Plus simulation results

Parameter	NETL Case 11	NETL Case 12	Linde Case LB1	Linde Case SIH
Scenario	No Capture	CO ₂ Capture with MEA	CO ₂ Capture with OASE [®] blue	CO ₂ Capture with OASE [®] blue and SIH
Net power output (MWe)	550	550	550	550
Gross power output (MWe)	580.3	662.8	638.9	637.6
Coal flow rate (tonne/hr)	186	257	236	232
Net HHV plant efficiency (%)	39.3%	28.4%	30.9%	31.4%
Total overnight cost (\$2011)	1,348	2,415	1,994	1,959
Cost of captured CO ₂ with TS&M (\$/MT)	N/A	67	52	50
Cost of captured CO ₂ without TS&M (\$/MT)	N/A	57	42	40
COE (mills/kWh) with TS&M cost included	81.0	147.3	128.5	126.5

LB1 - Linde-BASF PCC plant incorporating BASF's OASE® blue aqueous amine-based solvent

SIH - New Linde-BASF PCC plant incorporating the same BASF OASE[®] blue solvent featuring an advanced stripper inter-stage heater design

Energy Demand for 90% Capture and Compression

Linde process options reduce energy demand of CO₂ capture

Utility	NETL-MEA	Linde-BASF LB1	Linde-BASF SIH	
Reboiler Duty, GJ/MT_CO ₂)	3.61	2.61	2.30*	
Cooling Duty (MS _{th} hr)/(MT_CO ₂)	1.64	1.12	0.94	
Electrical Power (kWehr/MT_CO2)	119.9	102.95	104.16**	
*Effect of stripper inter-stage heater (SIH): semi CO2 lean solvent is reheated by hot CO2 lean solvent exiting stripper				
**Effect of additional solvent pump for SIH configuration adds 636 kW of electrical power				

Annual Operating and Maintenance Expenses

Novel solvent reduces annual operating expenses

Annual O&M Expenses for 550 MWe PC Power Plant with PCC (2011\$)				
	NETL_2011	Linde-BASF	Linde-BASF	Linde-BASF
Case	Case 12	LB1-2011	SIH-2011	LB1-AFSC-2011
Total Fixed Operating				
Cost	64,137,607	57,356,056	56,777,693	56,557,758
Maintenance Material				
Cost	19,058,869	18,017,114	17,823,784	17,700,023
Water	3,803,686	3,595,777	3,557,193	3,532,493
Chemicals*	24,913,611	23,551,836	23,299,117	23,137,338
SCR Catalyst	1,183,917	1,119,204	1,107,195	1,099,507
Ash Disposal	5,129,148	4,848,789	4,796,760	4,763,454
By-Products	0	0	0	0
Total Variable Operating				
Cost	54,089,231	51,132,721	50,584,050	50,232,815
Total Fuel Cost (Coal @				
68.60\$/ton)	144,504,012	136,605,442	135,139,620	134,201,266

*Includes cost of OASE blue[®] solvent for Linde-BASF PCC options

🗖 - BASE

Net higher heating value (HHV) efficiency (%) improvements

Cost of electricity (COE) reduction (\$/MWh) (2011\$) with lower overall CAPEX and OPEX

*Lower cost of CO*₂ *captured (\$/tonne CO*₂*) (2011\$) toward DOE target of \$40/tonne CO*₂

TECHNOLOGY GAPS

Technology Gap Analysis

TRL improvements that would result from large scale pilot

1. Columns expected to achieve TRL 9 based on Linde related experience in building up to \sim 12 m diameter columns for other commercial applications.

Technology Gap Analysis

Path forward defined to close all technology gaps in large pilot

Technology Gap	Description/Comments	Path Forward
Absorber column scale-up	 Uniform vapor and liquid distribution. Affordable construction strategy	 Apply Linde commercial experience Assess modular shop fabrication vs field installation. Implement low cost column construction strategy
Flue gas concentration variability	• Variability in flue gas composition (CO ₂ , O ₂ , SO ₂ , etc.)	• Recycle CO ₂ from stripper to flue gas (FG) and design direct contact cooler to manage higher SO ₂ concentration in FG.
Load following strategy and response	• Varying loads based on University power and heat demand	• Implement a device-appropriate load-following strategy for the capture plant
FG impurities leading to solvent losses	• Significant aerosol formation in the flue gas may increase amine carryover	• Measure and characterize aerosols in flue gas and make provisions for mitigation
Regeneration energy optimization	• An advanced stripper configuration required to minimize regeneration energy	• Reduce reboiler duty by incorporating stripper inter-stage heating
Solvent Management	• Large quantities of solvent present challenges around delivery logistics, storage, and disposal	 Develop solvent management options using BASF's experience Test portable solvent reclaiming system if necessary
Water and Wastewater Management	• Large amounts of wastewater with trace amounts of contaminants may incur high permitting costs or reach capacity limits	• Evaluate options for treatment or reuse of wastewater

LESSONS LEARNED, AND PATH FORWARD

Lessons Learned

Technical & Permitting Regulatory

Technical

- Significance of solvent regeneration at high pressure (up to 3.5 Bar) on capital and operating cost reductions
- Significance of flexible reboiler design to allow proper PCC process dynamics during rapid power plant load fluctuations.
- Optimization of PCC process configuration to maximize waste heat utilization and ultimately minimize solvent regeneration energy consumption – results in inclusion of Stripper Inter-stage Heater (SIH) Significance of aerosol formation on solvent losses and related emission issues
- Center for utilizing captured carbon have spurred interest from other technology developers in CO₂ utilization

Permitting & Regulatory

• Importance of water demand on the permitting costs

Lessons Learned

Stakeholder Engagement & Workforce Development

Stakeholder Engagement

- Increased interest in retrofitting plants for carbon capture
- Potential impact of CCUS on the regional economy
- How the proper host site can become a training ground for the operation and maintenance of capture facilities

Workforce Development

- Working through groups like Association of Illinois Electric Cooperatives (AIEC) creates strong advocates for CCUS
- Potential to include education opportunities at the undergraduate and graduate level that enable students to understand the value of CCUS
- Opportunity to train future operators of capture facilities

ACKNOWLEDGEMENTS

Name	Organization
Bruce W Lani	National Energy Technology Laboratory / US Department of Energy
Yongqi Lu, Vinod Patel, Hong Lu, Sallie Greenberg, Randy Locke, Deb Jacobson, Gary Miller	Prairie Research Institute / University of Illinois
Michael Larson, David Wilcoxen, Richard Rundus, Tracy Malvestuto	Abbott Power Plant / University of Illinois
Krish Krishnamurthy, Makini Byron, Devin Bostick, Stevan Jovanovic, Joseph Naumovitz, Torsten Stoffregen, Ali Jangi, Andy Poplin	Linde
Sean Rigby	BASF
David Guth, Steve Bennett	Affiliated Engineers Inc.
Steve Davis, John Lowrey	Association of Illinois Electric Cooperatives

This project is supported by the U.S. Department of Energy / National Energy Technology Laboratory (DOE/NETL) through Cooperative Agreement No. DE-FE0026588

> **ILLINOIS** Prairie Research Institute

