Application of A Heat-Integrated Postcombustion CO₂ Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant

Kunlei Liu, Jim Neathery and Joe Remias

Center for Applied Energy Research
University of Kentucky
Lexington, KY 40511

Outline

Project Overview

- Team and funding
- Objective
- SOW
- Test site

The facts of slipstream

- Development history
- System feature
- Test site information
- Experimental plan
- Slipstream apparatus

Team and Funding Structure

Partner & Subcontractor

Subcontractor

Objectives

- 1) To demonstrate a heat-integrated post-combustion CO₂ capture system with advanced solvent;
- To gather data on solvent degradation, water management as well as other information during the long-term verification runs;
- To provide scale-up data and design information for commercial-scale projects;
- 4) To collect information/data on material corrosion and identify appropriate materials for a 550 MWe commercial-scale carbon capture plant;

What will We Do?

- The design, start-up/commissioning of a 2MWth test facility (1400 cfm);
- Parametric investigation and long-term verification;
- New corrosion resistance coatings for material used in CCS system (access ports needed in scrubber and stripper areas)
- Solvent degradation (liquid product and gaseous emissions from CCS)
- A series of transient tests to quantify the ability of the carbon capture system to follow load demand.

Test Site

- Located at 815 Dix Dam Rd, Harrodsburg, KY 40330
- 40 miles from UKy-CAER

Background – Heat Recovery from Overhead Condenser

Relative Humidity on Steam Turbine Output Correction

Center for Applied Energy Research

Advanced Solvent (H3-1)

Advanced Solvent (H3-1)

Corrosivity of H3-1

	Temperature (°C)	Corrosion rate (mmpy)	
Solvent		H3-1	5 M MEA
Carbon steel A106	40	UN	0.79
	90	0.350	4.97
Stainless steel 304	40	UN	UN
	90	0.104	0.187

The Effect of CO₂ Concentration at Absorber Inlet on Carbon Loading in Rich Solution

The Effect of CO₂ Concentration at Absorber Inlet on Energy Consumption

What We Have Proposed

Engineering design, build and install an advanced CO₂ capture system into an existing PC power plant at a 0.7 MWe slipstream scale (~15 TPD CO₂)

Three novel processes will be designed and integrated: 2-stage solvent striping, cooling tower desiccant, and Hitachi solvent

1. Two-stage Stripping:

- Increase solvent working capacity by providing a secondary air-stripping column following the conventional steam stripping column.
- Air stripping stream sent to boiler as combustion air to increase flue gas $\mathsf{P}_{\mathsf{CO}_2}$ exiting boiler

2. Integrated Cooling Tower:

- Use regenerated CO₂ stream waste heat to dry liquid desiccant
- Liquid desiccant is used to dry cooling tower air → Improved power plant cooling tower and steam turbine efficiency

3. Advanced Hitachi Solvent:

Primary amine analogous to MEA

Testing Site: LG&E and KU's Brown Generating Station

Boilers Used for Testing

- Unit 1: B&W wall fired sub-critical boiler with Westinghouse 110 (gross) MW reheat turbine (1450 psig/1000°F/1000°F), ESP, and Low NOx burners;
- Unit 2: CE t-fired sub-critical boiler with Westinghouse 180 MW (gross) reheat turbine (1800 psig /1000°F /1000°F), ESP, Low NOx burners, and OFA;
- Unit 3: CE t-fired sub-critical boiler with Westinghouse 457 MW (gross) reheat turbine (2400 psig/1000°F /1000°F), ESP, Low NOx burners, and OFA.
- FGD common to all 3 units, in near future, SCR and SAM Mitigation Equipment

BPs and Tasks (still under discussion)

BP	Task	Name	
	1.0, 5.0, 9.0, 17.0	Project Management & Planning	
	2.0	System and Economic Analysis.	
1	3.0	Initial EH&S Assessment	
	4.0	Basic Process Specification and Design	
	6.0	Slipstream Site Suvery	
2	7.0	Finalized Engineering Specification and Design	
8.0 Test Condition Selection and Test Plan		Test Condition Selection and Test Plan	
	10.0	System Engineering Update and Model Refinements	
	11.0	Update of EH&S Assessment	
	12.0	Site Preparation	
3	13.0	Fabrication of Slip-stream Modules	
	14.0	Procurement and Installation of Control Room/Field	
	15.0	Fabrication of Corrosion Coupons	
	16.0	Slipstream Facility Erection, Start-up, Commissioning	
	18.0	Slip-stream Test Campaign	
4	19.0	Final Updater of Techno-Economic Analysis	
	20.0	Final EH&S Assessment	

Test Variables

Factors	Description	Level 1 (-1)	Level 2 (0)	Level 3 (1)
А	L/G Ratio (wt/wt)	0.2	0.5	0.8
В	Stripper Pressure (bar)	1.3	3	4.5
С	Inlet CO ₂ Concentration (vol %)	10	12	14
D	Solvent Blow-down (%)	0.5	1	2

Sampling and Instrumentation

Instrumentation	Items Determined	Samples
On-line Gas and Liquid Analyzers	Gaseous composition Carbon loading	Gas and Liquid
HPLC-MS and GC-MS	Solvent and degradation products	Gas and liquid
IC	Halogen, sulfur-, nitro- compounds	Gas and liquid
ICP	Trace metals	Liquid
Titrator / phosphoric acid method	Alkalinity and total solution carbon	Liquid
pH, density meter	Solution pH, density	Liquid
Capillary viscometer and rise tensiometer	Solution viscosity and surface tension	Liquid
XRD	Coating and corrosion product	Metal coupon

Design Considerations

The Performance of Solvent Used in this Project				
Solvent	Design Solvent (30 wt% MEA)	Performance Solvent (Hitachi H3-1)		
Net Cycle Capacity (mole/kg Solu)	1	1.25		
Heat Required for Regeneration (Btu/Ib-CO ₂)	1380	1035		
Mass Transfer flux in CO ₂ absorper (relative to MEA)	baseline	1.2x		
Heat Capacity relative to MEA	baseline	1.0x		
Viscosity relative to MEA	baseline	1.0x		
Surface Tension relative to MEA	baseline	1.0x		
Foaming Tendency relative to MEA	baseline	less		

- Design pressure for stripper and associated components: 150 psi
- Turn-down operation will be 4:1 ratio
- Structure support: (middle suspension??)

Preliminary 3-D View of Slipstream Unit

- 80 ft tall
- 1000 ft² footprint (15'x65', but could be rearranged)
- 5 to 6 modulus with 100,000lbs/modulus
- Plus control/lab trailer and others

Output

- An advanced heat-integrated postcombustion CO₂ capture process that could be applied to various solvents;
- Knowledge on water balance and solvent management, and metal corrosion as well;
- Gain experience on system dynamics corresponding to load, trip and upset;
- Data on gas/liquid emission and solvent degradation

