

Nitrosamines and Thermal Degradation: Exploring Solvent Degradation with Mass Spectrometry

Jesse Thompson, Quanzhen Huang, Henry Richburg, Megan Combs and Kunlei Liu

University of Kentucky
Center for Applied Energy Research
Lexington, KY

http://www.caer.uky.edu/powergen/home.shtml

UT Review Meeting October 9th, 2014

Outline

- Overview of MassSpectrometry Methods
- Nitrosamines
 - Solid Phase Extraction (SPE)
 - Recovery and Analysis
- Thermal Degradation
 - Unknown Identification
 - Diamines
 - MEA
- Conclusion

MS Instrumentation

HPLC-TOF-MS
Good for Aqueous Samples
Thermal, Oxidative
Nitrosamines and Aldehydes

Time of Flight Mass Spectrometry

Nitrosamine Analysis

- Two samples types
 - 1. Liquid
 - Nitrosamines are collected in 30 wt% MEA.
 - 2. Gas
 - Nitrosamines are collected in 0.1% sulfamic acid.
 - SASK Power is using a similar methodology.

Solid Phase Extraction (SPE)

- Activated carbon cartridges with specific affinity for nitrosamines (EPA 521)
- •Separate the nitrosamines from the concentrated amine matrix
- Sample preconcentration leading to lower limits of detection

Percent Recovery of solid phase extracted nitrosamines - MEA

- •30% MEA (C/N=0.4) spiked with the nitrosamines
- •Eluent: DCM
- •Good reproducible recovery with DCM over a range of different nitrosamine concentrations

Application to a Mixture of Different Nitrosamines

Table 1. Initial and final composition and volume of 0.1% sulfamic acid Batch solutions

Batch	Nitrosamine	Extraction solvent	Initial sample volume (mL)	Final sample volume (mL)	Concentration (ug)	$\Delta { m V}$
5	NMOR	DCM	20 mL	~17.5 mL	10-200	1.14x concentration
6	NDEA	DCM	20 mL	~17.5 mL	10-200	1.14x concentration
7	NDMA	DCM	20 mL	~12.5 mL	5-50	1.6x concentration
8	NPIP	DCM	20 mL	~12.5 mL	5-100	1.6x concentration
9	NPY	DCM	20 mL	~17.5 mL	10-200	1.14x concentration

Percent Recovery of solid phase extracted nitrosamines - Sulfamic

Application to a Mixture of Different Nitrosamines

Table 2. Initial and final composition and volume of benchmark 30 wt% MEA Batch solutions

Batch	Nitrosamine	Extraction solvent	Initial sample volume (mL)	Final sample volume (mL)	Concentration (ug)	$\Delta { m V}$
1	NMOR	DCM	100 mL	~17 mL	10-100	5.9x concentration
2	NMOR	DCM	40 mL	~16.5 mL	20-400	2.4x concentration
3	NDEA	DCM	40 mL	~16.5 mL	20-400	2.4x concentration
4	NDELA	Acetone	20 mL	~16.5 mL	200	2.4x concentration

AERThermal Degradation of Diamines

- •Loaded amine solution (2.5M, C/N 0.4)
- •125°C, 135°C, 145°C
- •100-200 hours heating
- •Un-heated solution as a reference blank

UT Review Meeting October 9th, 2014

A. EDA TIC before heating

B. EDA TIC after 145C, 200h

Actual [M+H]+ (m/z)	Formula Generated	Calculated [M+H] ⁺ (m/z)	
87.09892	C ₃ H ₆ N ₂ O	87.0553	
147.17980	C ₅ H ₁₄ N ₄ O	147.124	
173.16375	C ₇ H ₁₆ N ₄ O	173.13969	
195.14995	Poor molecular match	195.1499	

Product Identification – 1,2-DAP

1,2-DAP TIC before heating

1,2-DAP TIC after 145C, 200h

1,2-DAP after 145C, 200h with substraction

Product Identification – 1,2-DAP

Thermal Contribution – 1,3-DAP

1,3-DAP TIC before heating

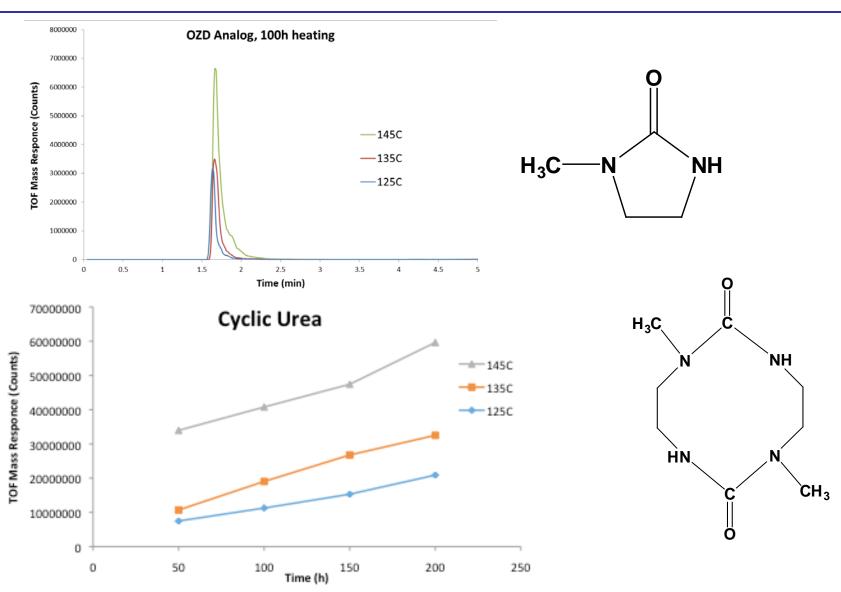
1,3-DAP TIC after 145C, 200h

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 1,3-DAP after 145C, 200h with substraction Counts vs. Mass-to-Charge (m/z)

Product Identification – 1,3-DAP

MEDA TIC before heating

MEDA TIC after 145C, 200h



MEDA after 145C, 200h with substraction

Acknowledgement

Carbon Management Research Group Members,

and US National Energy Technology Laboratory (NETL)

[Analytical method development support for this work provided under DE-FE 0007395]