

HIGH TEMPERATURE UNIQUE LOW THERMAL

CONDUCTIVITY THERMAL BARRIER COATING (TBC) ARCHITECTURES

A. K. Rai and R. S. Bhattacharya, UES Inc., 4401 Dayton-Xenia Road, Dayton, OH 45432

Douglas E. Wolfe, Applied Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16804 Dongming Zhu, NASA Glenn Research Center, Lewis Field Cleveland, Ohio 44135

FUTURE NEEDS AND REQUIREMENTS

Increased efficiency of power plants (current pulverized coal technologies and future IGCC plants) is needed for less fuel consumption and reduction in toxic $(CO_2, NO_x \text{ and } SO_x) \text{ emissions}.$

Inlet temperature of involved gas turbines needs to be higher (>1300F). Better protection of the metal components is required. Thermal barrier coatings (TBC) should have the following attributes:

- Lower thermal conductivity
- Higher temperature phase stability

CURRENT STATE-OF-THE-ART (SOA) TBC TECHNOLOGY

TBC system (top coat, bond coat) is used to protect the metallic components of gas turbine engines.

Current state-of-the-art TBC System

Sketch of a TBC system

• Top Coat : 6-8% Yttria Stabilized Zirconia (YSZ) Bond Coat : Single Phase (Ni,Pt)AI, Two Phase MCrAIY

LIMITATIONS OF SOA TBC TECHNOLOGY

At higher (>1100°C) gas temperature YSZ undergoes

- Increased sintering: Higher thermal conductivity (k), Increased elastic modulus, Lower strain compliance
- SOA TBC is unlikely to be usable at elevated temperatures lacksquare

OBJECTIVE

Development of high temperature TBC coating architectures having low thermal conductivity and high strain tolerance

TBC MATERIALS FOR HIGH TEMPERATURE APPLICATIONS

1. Low k YSZ: YSZ doped with divalent rare earth oxide

2. Pyrochlore oxides: Stable at higher temperature, Sluggish sintering kinetics, Lower thermal conductivity

Examples: $Gd_2Zr_2O_7$ (1500°C), $Sm_2Zr_2O_7$ (1700°C)

PHASE I ACCOMPLISHMENTS

1. Successfully fabricated monolayered and multilayered TBCs of selected materials.

2. Demonstrated lower thermal conductivity (TC) of monolayered $Gd_2Zr_2O_7$ and low k YSZ TBC compared to SOA YSZ TBC. Shuttered multilayered Gd₂Zr₂O₇ exhibited even lower TC. TC data also demonstrated lower sinterability of the Gd₂Zr₂O₇ and low k YSZ compared to the SOA YSZ.

3. Low k/Gd₂Zr₂O₇ multilayered TBC exhibited higher TC than monolayered and shuttered multilayered TBC. This could be related with unoptimized

• Strain compliance at higher temperature

SELECTED HIGH TEMPERATURE TBC MATERIALS/DESIGN WITH LOWER **THERMAL CONDUCTIVITY**

- 1. Materials: Low k YSZ, Doped YSZ, Gd₂Zr₂O₇
- 2. Design: Monolayer, Multilayer (Shuttered, Alternating, Low k YSZ/Gd₂Zr₂O₇)

microstructure.

4. Demonstrated that the intrinsically higher erosion rate of $Gd_2Zr_2O_7$ can be lowered by multilayered (low k YSZ/Gd_2Zr_2O_7) coating architecture.

30° Volume Loss vs Erodent Mass

Composite TBC Structure

PHASE II PROGRAM

- 1. Optimization of TBC in relation to microstructure, and design for lower TC and erosion rate.
- 2. Evaluation of thermal cycle life of optimized TBCs.

3. Develop customer base for commercialization of the proposed technology. 4. Develop cost effective thermal spray process for the optimized TBCs.

