

Treatment of Produced Water from Carbon Sequestration Sites for Water Reuse, Mineral Recovery and Carbon Utilization

Presented By:

James H. Irvin

Manager – Fossil Technologies Southern Research Birmingham, AL

21-APR-2016

DE-FE0024084

DISCLAIMER

The material in the following presentation is based upon work supported by the Department of Energy under Award Number DE-FE0024084

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

TEAM

CONTRIBUTORS

- Mike Godec Vice President and Treasurer, Advanced Resources International, Inc.
- Ben Laurent Process Engineer, Heartland Technology Partners, LLC
- Larry Stowell Eastern Regional Sales Manager, New Logic Research, Inc.
- Michael N. DiFilippo Owner, DiFilippo Consulting
- Jay E. Renew, P.E. Senior Environmental Engineer, Southern Research

GOALS

- Select four candidate CO₂ sequestration reservoirs based on water chemistry and geologic properties
- Develop an integrated and adaptable concentration system
- Develop solidification & stabilization mixtures to immobilize residual contaminants
- Evaluate opportunities to recover strategic and rare earth minerals (SREMs), efficiently utilize CO₂ and beneficially use the produced water
- Complete a technical readiness review, economic feasibility analysis and an environmental risk assessment

TASK LIST & TECHNICAL LEAD

Task #	Description	Lead
1	Project Management	SR
2	Design Basis	ARI
3	Evaporation System	Heartland Technology & New Logic Research
4	Mineral Recovery System	SR
5	Solidification & Stabilization	SR
6	Water Condensation	SR
7	Byproduct Reuse	SR
8	Techno Economic Assessment	DiFilippo Consulting
9	Environmental Risk Assessment	SR

SR

DESIGN BASIS

- Define the CO₂ injection rate as 3.5 million tonnes per year
- Select four representative saline aquifer reservoirs with distinct geologic and/or geochemical characteristics
- Evaluate geologic properties and estimate the number of injection and withdrawal wells required per reservoir
- Estimate pre-injection water withdrawal volume to enable efficient CO₂ plume directional control
- Estimate long term water withdrawal requirements to manage and sustain reservoir pressure

FORMATION CHARACTERISTICS

Formation	Description or Test Site	TDS (mg/L)	Ca (mg/L)	Mg (mg/L)	Na (mg/L)	K (mg/L)	Organic Carbon (mg/L)
Tuscaloosa	Mississippi	180,000	13,000	1,200	46,900	800	78
Tuscalousa	Formation Avg.	138,927	10,108	1,081	40,733	359	450
	Decatur	190,000	19,000	1,800	50,000	1,700	-
Mount Simon	Formation Avg.	127,482	8,514	1,428	22,545	758	-
Sulphur Point	Sulphur Point	35,000	200*	50*	98,000 (1	Na + K)*	-
& Keg River	Keg River	35,000	942	123	4,851	586	-
Wasson Field	Formation Avg.	188,320	5,578	3,482	63,014	519	-
San Andres	Formation Min.	66,887	1,100	293	6,318	510	-

* Chemical Analyses from Sulphur Point Analyses estimated from graph in Crockford, 2008

SOURCE: Advanced Resources International, 2015. *Estimated Produced Water Volumes with Objectives of Controlling Reservoir Pressure and/or Plume Dispersion During CO2 Injection for Storage*. DE-FE0024084 Project Deliverable #3. October 2015

21-APR-2016

HIGHEST CONCENTRATION VALUES

Formation	Description or Test Site	TDS (mg/L)	Ca (mg/L)	Mg (mg/L)	Na (mg/L)	K (mg/L)	Organic Carbon (mg/L)
Tuscaloosa	Mississippi	180,000	13,000	1,200	46,900	800	78
TUSCAIOUSA	Formation Avg.	138,927	10,108	1,081	40,733	359	450
	Decatur	190,000	19,000	1,800	50,000	1,700	-
Mount Simon	Formation Avg.	127,482	8,514	1,428	22,545	758	-
Sulphur Point	Sulphur Point	35,000	200*	50*	98,000 (1	Na + K)*	-
& Keg River	Keg River	35,000	942	123	4,851	586	-
Wasson Field	Formation Avg.	188,320	5,578	3,482	63,014	519	-
San Andres	Formation Min.	66,887	1,100	293	6,318	510	-

* Chemical Analyses from Sulphur Point Analyses estimated from graph in Crockford, 2008

SOURCE: Advanced Resources International, 2015. *Estimated Produced Water Volumes with Objectives of Controlling Reservoir Pressure and/or Plume Dispersion During CO2 Injection for Storage*. DE-FE0024084 Project Deliverable #3. October 2015

21-APR-2016

LOWEST CONCENTRATION VALUES

Formation	Description or Test Site	TDS (mg/L)	Ca (mg/L)	Mg (mg/L)	Na (mg/L)	K (mg/L)	Organic Carbon (mg/L)
Tuscaloosa	Mississippi	180,000	13,000	1,200	46,900	800	78
Tuscalousa	Formation Avg.	138,927	10,108	1,081	40,733	359	450
	Decatur	190,000	19,000	1,800	50,000	1,700	-
Mount Simon	Formation Avg.	127,482	8,514	1,428	22,545	758	-
Sulphur Point	Sulphur Point	35,000	200*	50*	98,000 (1	Na + K)*	-
& Keg River	Keg River	35,000	942	123	4,851	586	-
Wasson Field	Formation Avg.	188,320	5,578	3,482	63,014	519	-
San Andres	Formation Min.	66,887	1,100	293	6,318	510	-

* Chemical Analyses from Sulphur Point Analyses estimated from graph in Crockford, 2008

SOURCE: Advanced Resources International, 2015. *Estimated Produced Water Volumes with Objectives of Controlling Reservoir Pressure and/or Plume Dispersion During CO2 Injection for Storage*. DE-FE0024084 Project Deliverable #3. October 2015

21-APR-2016

LARGEST FORMATION DEVIATION

Formation	Description or Test Site	TDS (mg/L)	Ca (mg/L)	Mg (mg/L)	Na (mg/L)	K (mg/L)	Organic Carbon (mg/L)
Tuscaloosa	Mississippi	180,000	13,000	1,200	46,900	800	78
Tuscalousa	Formation Avg.	138,927	10,108	1,081	40,733	359	450
	Decatur	190,000	19,000	1,800	50,000	1,700	-
Mount Simon	Formation Avg.	127,482	8,514	1,428	22,545	758	-
Sulphur Point	Sulphur Point	35,000	200*	50*	98,000 (1	Na + K)*	-
& Keg River	Keg River	35,000	942	123	4,851	586	-
Wasson Field	Formation Avg.	188,320	5,578	3,482	63,014	519	-
San Andres	Formation Min.	66,887	1,100	293	6,318	510	-

* Chemical Analyses from Sulphur Point Analyses estimated from graph in Crockford, 2008

SOURCE: Advanced Resources International, 2015. *Estimated Produced Water Volumes with Objectives of Controlling Reservoir Pressure and/or Plume Dispersion During CO2 Injection for Storage*. DE-FE0024084 Project Deliverable #3. October 2015

21-APR-2016

CO₂ INJECTION RATES

Storage Reservoir Setting	CO ₂ Injection Rate per Well (Mscf/day)	Number of CO ₂ Injection Wells *		
Tuscaloosa	9,242	21		
Mount Simon	14,447	14		
Keg River	1,259	145		
San Andres	119	1,531		

* Estimated to achieve 3.5 million tonnes per year of CO₂ injection per reservoir

SOURCE: Advanced Resources International, 2015. *Estimated Produced Water Volumes with Objectives of Controlling Reservoir Pressure and/or Plume Dispersion During CO2 Injection for Storage*. DE-FE0024084 Project Deliverable #3. October 2015

WATER PRODUCTION RATES

Storage Reservoir Setting	Reservoir Production		Number of Production Wells *	Well Production (GPM)	
Tuscaloosa	58,926	2,478,000	6	287	
Mount Simon	73,063	3,066,000	7	304	
Keg River	92,492	3,864,000	9	298	
San Andres	72,687	3,066,000	7	304	

* Assumes maximum water production rate of 10,000 barrels per day per well to achieve 3.5 million tonnes per year CO_2 injection

SOURCE: Advanced Resources International, 2015. *Estimated Produced Water Volumes with Objectives of Controlling Reservoir Pressure and/or Plume Dispersion During CO2 Injection for Storage*. DE-FE0024084 Project Deliverable #3. October 2015

21-APR-2016

EVAPORATION SYSTEM

- Develop a conceptual high efficiency thermal evaporation system to treat high TDS streams
- Develop a integrated conceptual system with non-thermal preconcentration and final stage thermal concentration
- Create process flow diagrams for promising concepts
- Calculate mass and energy balances for the selected systems
- Estimate solids production rates and concentrate properties
- Evaluate reuse opportunities

VIBRATORY SHEER ENHANCED PROCESSING (VSEP)

Patented Membrane filtration system by New Logic Research:

- Decreased membrane fouling
- Processes difficult high solids feed waters
- Produces intense shear waves on the face of membranes
- Non-Thermal operation for reduced CO₂ impact

Oscillating motion generates 200 G's of force

VSEP TECHNOLOGY

- Oscillating resonant motion
- Travels up to 1/2" 50x/sec
- Causes solids to hover above membrane
- Wide feed channel allows processing of high solids & difficult brines

HEARTLAND CONCENTRATOR PROCESS

HEARTLAND TECHNOLOGY OVERVIEW

- Demonstrated ZLD process
- Direct contact evaporation
 - No heat exchangers mitigates scaling
 - Operates on waste heat or direct fire
 - Two moving parts
 - Saturated gas stream
 precludes drying and scaling
- Manages heavy scaling brines in continuous mode

SYSTEM DESIGN CONSIDERATIONS

- 10,000 bbl/day ≈ (292 GPM) per well for all four formations
- VSEP pre-concentration at Keg River with further consideration for Wasson Field formation minimum
- Utilize three parallel 100 GPM Heartland LM-HT[®] concentrators
- Volume Reduction:
 - 5:1 volume reduction
 - 5:1 cycle-up of TDS/TSS
- Slurry effluent concentration up to 65% total solids (TDS+TSS)

VSEP PROCESS FLOW

SOURCE: New Logic Research, 2016. Created for Task 3 of award DE-FE0024084.

21-APR-2016

HEARTLAND PROCESS FLOW – FLUE GAS

SOURCE: Heartland Technology Partners, 2016. Created for Task 3 of award DE-FE0024084.

21-APR-2016

PRELIMINARY HEARTLAND MASS BALANCE RESULTS

Energy Source	Location	Infeed Flow (GPM)	Evaporation Rate (GPM)	Slurry Rate (GPM)	Volume Reduction
	Tuscaloosa	292	236	58	80%
Turbine Waste	Mount Simon	292	232	61	79%
Heat	Keg River	58	47	11	81%
	San Andres	292	233	61	79%
	Tuscaloosa	292	232	65	78%
Flue Gas	Mount Simon	292	229	68	77%
(Before APH)	Keg River	58	47	13	78%
	San Andres	292	230	67	77%
	Tuscaloosa	292	236	58	80%
Flue Gas	Mount Simon	292	232	61	79%
(After APH)	Keg River	58	47	11	81%
	San Andres	292	233	61	79%

SOURCE: Heartland Technology Partners, 2016. *Created for Task 3 of award DE-FE0024084*.

21-APR-2016

PROCESS INTEGRATION BENEFITS

- TDS concentration up to ≈ 80% solids for combined systems
- Brine volume reduction ≈ 65%: 1- Stage System (HP VSEP)
- Brine volume reduction ≈ 61%: 2 -Stage System (HP VSEP/SRO)
- Evaporation energy requirements reduced by up to 65%
- High TDS slurry easily mixes with stabilizing admixtures
- Permeate, concentrate and evaporated streams allow multiple opportunities for beneficial reuse
- Significant opportunity for targeted strategic rare earth mineral recovery

MINERAL RECOVERY SYSTEM

- Determine elements of interest for recovery based on reservoir geochemistry (e.g. Li, Zn, Mn, Ga, Ge, In, Te, Y, and La)
- Conduct a literature survey to determine the most economically viable manner in which to recover valuable minerals
- Develop high level process flow diagrams with budgetary cost estimates for the mineral recovery system
- Estimate the recovery rate for minerals with commercially relevant value

SOLIDIFICATION / STABILIZATION

- Conduct bench scale studies to optimize mix formulations required for solidifying and stabilizing (S/S) solids
- Utilize leaching environmental assessment framework (LEAF) and toxicity characteristic leaching procedure (TCLP) testing to determine leachability of constituents of concern
- Develop high level process flow diagrams using suitable formulations for each of the distinct water types
- Estimate capital and O&M costs for annual treatment

CONCENTRATE STABILIZATION

S/S consists of two processes:

- <u>Solidification</u> Physically encapsulating and improving physical properties
- <u>Stabilization</u> Converting contaminants to a less mobile and less toxic form

PERCOLATION COLUMN

Source – USEPA Method 1314

MONOLITH TEST

3-D Leaching Setup

Sample Centered in Eluant (top view)

Source – USEPA Method 1315

WATER CONDENSATION

- Investigate use of waste heat recovery to increase efficiency
- Investigate Joules-Thompson (JT) style heat exchanger utilizing supercritical CO₂ as cooling fluid
- Develop a high level design and process flow diagram for the heat exchanger used to condense the evaporated produced water and evaporator combustion byproducts
- Determine relative efficiency of a JT style heat exchanger to a standard refrigeration based design

BYPRODUCT REUSE

- Estimate condensate production rates and water quality for:
 - Reuse within the concentration or other plant processes
 - Surface discharge to engineered wetland
- Evaluate beneficial reuse options for expanded supercritical CO₂
- Investigate repurposing expanded supercritical CO₂ for use as a feedstock for an onsite engineered algae conversion system

BENEFICIAL REUSE & VALUE ADDED

TECHNO ECONOMIC ASSESSMENT

- Conduct a technical readiness review
- Conduct an economic feasibility study for the selected reservoirs
- Develop cost comparisons for each of the four systems on a dollar per gallon of water basis
- Develop a list of primary treatment costs drivers to enable identification of barrier technologies

ENVIRONMENTAL RISK ASSESSMENT

- Evaluate the potential environmental risk to air, water and land
- Example considerations include:
 - Identified hazard pathways
 - Estimated magnitude of potential consequences
 - Spatial and temporal scale of consequences
 - The probabilistic likelihood of each event

CONTINUING CHALLENGES

- Highly variable geochemistry will likely limit the development of a universal treatment technology
- Development of a strategic plan that aligns local natural resource utilization, regional energy demand and global emissions reduction requirements
- Designing an economically feasible process for long term CO₂ capture, sequestration and treatment of produced water byproducts

