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Motivation

 The U.S. Energy Information Administration (EIA) predicts global demand of energy 
will rise by 56 % from the year 2010 to 2040.

 Renewable energy and nuclear power are fastest growing energy sources.

 Yet, 80% of the world’s power is still generated from conventional sources.

 Conventional fossil fuel based power plants have low efficiency, high environmental 
impact.

 IGCC plants are better on both fronts.

 Hence, it makes sense to invest in research for improving performance of IGCC 

plants.
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IGCC Power Plant

Picture source: Wikipedia
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• More than 80 unit operations
• Over 200 streams



VIRTUAL SENSING IN IGCC PLANTS
 The process of estimating value of a variable through mathematical modeling.

 Eliminates need of placing direct physical means of measurement such as a sensor. 

 Two types – analytical and empirical

 Advantage - Economical and less-invasive.
 Appropriate choice for IGCC plant due to harsh operating conditions and hundreds 

of process variables.

 Disadvantage - lower measurement accuracy than actual sensing
 High measurement error gives rise to uncertainty in the system.

 Only variables that are expensive or difficult to measure directly are measured 
virtually.
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SENSOR NETWORK – WHY DO WE NEED IT?
 OBSERVABILITY

 Monitoring and controlling the process variables in real time.
 To maintain all process variables within a safe range of operation at all 

times.
 Ensures smooth, safe and reliable operation.

 EFFICIENCY
 Certain variables that directly impact efficiency should be close to 

target value.
o Gasifier temperature
o Steam to air ratio in gasifier
o Air to fuel ratio in gas turbine.

 If these variables are above or below their optimal values, the plant 
will run at a sub-optimal level.
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OBJECTIVES 
& 

PROBLEM STATEMENT
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OBJECTIVES
 METHODOLOGY 

 Develop sensor deployment methodologies applicable to IGCC power plant 
systems.

 Incorporate measurement error (uncertainty) and non-linear nature of the 
system in the formulation and solution of the optimal sensor deployment 
problem. 

 ALGORITHM 
 Develop a new algorithmic framework that can improve the computational 

efficiency significantly.

 MULTI-OBJECTIVE APPROACH
 Develop multi-objective optimal sensor deployment algorithms to provide trade-

off designs between various objectives – maximizing observability & maximizing 
efficiency.
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PROBLEM STATEMENT

 Decision variables - number 
& location of sensors in the 
plant and the type of 
sensors.

 Objective functions –
maximizing observability 
(using FI), maximizing 
efficiency, minimizing cost.

 Constraint – budget, mass & 
energy balances.

Multi-
objective

• Simultaneous 
achievement of 
multiple objectives

Stochastic

• Uncertainty in 
process variables 
due to system and 
measurement noise.

Non-linear

• Equations 
governing the 
physical processes 
in the IGCC power 
plant are non-
linear.

Mixed
Integer

• Presence of integer 
and binary integer 
decision variables.
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Variables & Control
 24 intermediate variables selected 

 They have effect on output variables and plant performance.
 Sensors are to be installed in these locations
 Selected based upon experience 
 Placing actual sensors reduce measurement error.
 Place sensors strategically to gain as accurate information as 

possible for all these process variables.

Without sensor – measurement error is ± 20%
With sensor

 Low cost sensors, error = ± 5%
 Medium cost sensors, error = ± 2.5%
 High cost sensors, error = ± 1%
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• Specify uncertainties in key
input parameters in terms of
probability distributions.

• Sample the distribution of the
specified parameter in an
iterative fashion.

• The model is evaluated for
each of these sample points 
to determine the probabilistic 
value of objective function& 
constraints.

• Derivative estimation through  
perturbation analysis

GENERALIZED STOCHASTIC PROGRAMMING FRAMEWORK13

Ref: BONUS Algorithm for Large Scale Stochastic Non-linear 
Stochastic Algorithm Problems, U. Diwekar, A., David, 
Springer 2013



ALGORITHMIC FRAMEWORK 
BASED ON BONUS

B- Better 
O- Optimization for 
N- Non-Linear 
U- Uncertain 
S- Systems
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STOCHASTIC PROGRAMMING FRAMEWORK

Optimizer
(outer approx. of 
MINLP using GAMS)

Reweighting
(using MATLAB)

Ref: BONUS Algorithm for 
Large Scale Stochastic 
Non-linear Stochastic 
Algorithm Problems, U. 
Diwekar, A., David, 
Springer 2013

Computational time for 
800 samples reduced 
from 18 hours (ASPEN) to 
less than a minute 
(BONUS).

Computational time for 
800 samples reduced 
from 18 hours (ASPEN) to 
less than a minute 
(BONUS).



BONUS & Reweighting16

Ref: BONUS Algorithm for Large Scale Stochastic Non-linear Stochastic 
Algorithm Problems, U. Diwekar, A., David, Springer 2013

• Initial uniform distributions (lower & 
upper bound) assumed for decision 
variables. 

• PDFs of Decision & uncertain 
variables form base distributions. 

• BONUS samples solution space of 
objective function using base 
distributions.

• As decision variables change, the 
distributions for the objective 
function &constraints also change.

• BONUS algorithm estimates 
objective function & constraints 
based on ratios of the probabilities 
for the current and the base 
distributions.

• Thus, BONUS avoids sample model 
runs in subsequent iterations.



MULTI-OBJECTIVE 
OPTIMIZATION
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Multi-objective approach

 Objectives: maximize fisher information, efficiency, minimize cost

 Constraint method, a posterior method for generating pareto set where

 The multi-objective problem is transformed into a series of single objective 
problems.

 Any single objective is optimized while the rest are converted into constraints 
with lower & upper bounds.

 Lower bound to cost corresponds to using no sensors, i.e., zero (0).

 Upper bound to cost corresponds to using high accuracy sensors for all 24 locations.
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STEPS IN OUR SOLUTION

 2-tier constraint method

 To derive only feasible solutions, Divide cost values into 10 bins 
between upper and lower bound.

 For each cost, solve single optimization problem to maximize 
efficiency and calculate the corresponding FI.

 Similarly, for each cost, solve single optimization problem to 
maximize FI and calculate the corresponding efficiency.
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STEPS (contd..)

 Derive upper & lower bounds of efficiency & FI & generate pay-off 
tables for each cost,
 For each pay-off table, select feasible values of efficiency in small 
increments and solve single optimization problems to find maximum FI 
for each of these values. 
Generate the complete pareto surface (trade-offs) by solving 
multiple single objective problems.
 Plot the complete pareto surface and analyze.
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MAXIMIZING FISHER INFORMATION

• Fisher information: 
a probabilistic 
nonlinear function

• Constraint on cost

• Stochastic Mixed 
integer nonlinear 
programming 
problem

21

Mass & Energy Balances



MAXIMIZING EFFICIENCY

 Second Objective – maximize 
expected value of plant 
thermal Efficiency

 Constraint – budget
 Efficiency depends upon only 

certain variables – coal feed 
rate, gas turbine electric 
power, steam turbine electric 
power etc.

 E = ௉௪௥௡௘௧ி௖௢௔௟௖∗ி௠௙∗ுை஼
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Mass & Energy balance equations:

The mass balance equation is given by:
Where

Yi,in = mass concentration of content I in inlet flow
Min = inlet mass flow rate
Yi,out = mass concentration of content i in outlet flow
Mout = outlet mass flow rate
Ri = net production rate of i by chemical reactions.

The energy balance equation is given by:
Where

U = internal energy in block
Hi,in = enthalpy flow rate of content i in the inlet flow
Hj,out = enthalpy flow rate of content j in the outlet flow
Qk = heat flow
Pm = mechanical power.



RESULTS & DISCUSSIONS
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Pareto set using only High Accuracy Sensors25



Pareto set using Low, Medium & High Accuracy Sensors26



Low Cost – High efficiency27



Low Cost – High efficiency28



Low Cost – Low FI – High Efficiency29



High Cost – High Efficiency – low FI30



High Cost – High Efficiency – low FI31



High Cost – High efficiency – low FI32



High Cost – High efficiency – High FI33



High Cost – High efficiency – High FI34



High Cost – High efficiency – High FI35



Moderate Cost – High efficiency – High FI36



Moderate Cost – High efficiency – High FI37



Moderate Cost – High efficiency – High FI38



Sensor Locations – L, M, H sensors

Sensor Locations – only H sensors

Cost - $5275000, FI - 154.81, Efficiency - 0.4377

Cost - $5275000, FI – 144.04, Efficiency – 0.4456
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L- 10, M-3, H-8, Nil - 3

H-13, Nil - 11
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High Cost – High efficiency – High FI41



Moderate Cost – High efficiency – High FI42



INFERENCES

 Maximizing efficiency is cheaper than maximizing FI.

 Even if we are trying to maximize efficiency, a budget of $5.27 million is 
sufficient. 

 Even if we are trying to maximize both, a budget of $ 7.38 million is 
sufficient.
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SUMMARY

 Initial sample generated from ASPEN

 Off-line APSEN simulations for the fixed number of samples

 Algorithmic framework based on BONUS for single objective optimization

 Feasible solutions by fixing cost bins apriori

 2-tier constraint method for solving multi-objective optimization.

 Pareto surface generation for decision makers

 Analysis of pareto surface can help determine the solution for desired 
trade-off.
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KEY CONTRIBUTIONS

Objectives satisfied 

 Developed sensor deployment methodology which incorporates non-
linearity and uncertainty - a framework for virtual sensing and hybrid 
hardware and virtual sensing in power plants.

 Developed computationally efficient algorithm -significant reduction in the 
number of model runs to be solved for optimization and the number of 
samples for the uncertainty analysis 

 Obtained tradeoffs between multiple objectives.
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FUTURE WORK

 Comparison of stochastic approach to SND with dynamic simulation 
approach to determine which is more computationally efficient.

 Include other objective functions, e.g., CO2 capture efficiency.

 Application of this methodology to dynamic sensor problems.

 Extension of this methodology to other systems which have a black box 
model.
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