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Graphene As A Sensor Material

Structure of graphene TY I DY Iy 2
- Monolayer of sp? bonded C-atoms Edge View

- p orbitals normal C-monolayer
- Ideally one layer but frequently multilayers

Attributes as gas sensor material
- Charge carrier density altered by adsorption

- Low carrier density —> high sensitivity

- High carrier mobility = rapid response

Graphene should provide the basis for high sensitivity,
rapid response chemoresistive sensors!

Basic Question: How can target specificity be achieved?

Fundamental scientific issue ‘ Basic Hypothesis
addressed in this research of this Research



Basic Hypothesis

Gas adsorption mediated by different types of nanoparticles attached
to independent chemoresistive graphene sensors can yield a unique
electrical response pattern for each adsorbed gas species.

Research Goals
Validate the hypothesis for graphene-nanoparticles (6-nP) composites

Demonstrate feasibility of a 6-nP composite “electronic nose”

Research Tasks
Synthesis of graphene

Fabrication of 6-nP composite sensors

Characterization of graphene films & sensor properties
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Synthesis Of 6/SiC Films
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Device Fabrication

- Grow uniform graphene film on
1 cm x 1 cm SiC substrate

- Use shadow mask & oxygen ICP-RIE
to remove graphene & form SiO,
strips while protecting
2 mm x 2 mm graphene regions

- Use shadow mask and e-beam
evaporation to produce Au/Ti
device patterns

- Use wafering saw to produce
2.5 mm x 2.5 mm die for testing

- Two different device patterns formed
TLM pattern - used for measuring electrical properties
Sensor pattern - used for sensor testing and characterization 8



Formation of 6-nP Composites

Solution based nucleation and growth chemistries
Au, Ag, Pt, Ir nanoparticles studied to date

Typical Reaction Chemistry
AgNO3 + NGBH4 = Ag + %’ HZ + %’ BZH6 + NGNO3

Preparation Sequence
Immerse graphene in ~10mM AgNO;/H,0O
Add reducing agent ~25mM NaBH,/H,0
Incubate mixture at room temperature

Remove & water wash

— 100nm JEOL
o sEM

After washing




Nanoparticle Nucleation & Growth
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- Particles removed by water wash are spheroidal
and associated with nucleation in the solution

- Attached nanoparticles are pyramidal and
associated with heterogeneous nucleation
on the surface

- Shape suggests Volmer-Webber growth
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Key Result

Nanoparticle coverage sufficient to
modify adsorption characteristics
without introducing new conduction
channels
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Unit #1 Film and Sensor Testing
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Unit #2 Film and Sensor Testing

- Large thermally stable test bed

- Temperatures to 1000°C+

- Possible to mount & test multiple |
sensors at the same time
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Electrical Characterization of Graphene Films
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Characterization Graphene Sensors
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Chemical & Thermal Response Regimes
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Possibility of measuring both
composition & flow
characteristics using same
sensor
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Characterization of 6-nP Composite Sensors
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Current Status

Synthesis and Fabrication Few Layer Graphene
v" Controllable graphene synthesis process Nanoclusters
developed Source Drain

l l

v' Solution based nucleation & growth chemistries
used to form G-nP composite films

v’ 6raphene & 6-nP composite sensors fabricated

Characterization and Testing

v' Graphene electrical properties & gas response characterized to ~800 °C for
H, and CO

v' G-nP composite electrical properties characterized to ~600 °C
O Characterize graphene & G-nP gas response to ~1000 °C in progress

[ Characterize response to additional gases 18



Future Directions

> Continue development of electronic nose
» Extend to liquids (electronic tongue)

> Continue optimization of graphene quality

> Explore other applications (e.g., FET)

> Continue development of theoretical understanding
of the 6-SiC interface and defect structures
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