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Project Goal and Technical Scope

* Develop the capabillity of Integrated Computational
Welding Engineering model to predict creep
deformation and failure in welded structures of
Creep Strength Enhanced Ferritic (CSEF) Steels
— Develop an engineering approach to quickly assess weld

creep performance based on experimental data (Level 1
model)

— Develop microstructure-based ICWE model for CSEF
steels weld creep performance prediction (Level 2 model)

— Use advanced experimental testing techniques to validate
and refine the model

*ﬁ 0Oak RIDGE NaTionaL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY



Modeling of Microstructure & Properties

High-fidelity microstructure modeling provides insight into microstructure
evolution and property heterogeneity of welds
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of grain growth of solidification multi-pass steel weld

Simulation of HAZ softening of a boron steel
top: simulation; bottom: measurement

Performance simulation
of a high strength steel weld
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Integrated Modeling Approach for Weld Creep Performance

Modify pre-existing
Process Model (Heat Treatment process model
and Welding)

Temperature Stress Distribution Macro Service Stress
Distribution (Residual Stress) Environmental Effect

Microstructure Model Microstructure

(precipitates size, fraction, . .
martensite boundaries fraction) Characterization

Structural Performance Special Designed

Model Experiment
(creep rate, creep damage)

Weld Creep Long-Term Reliability
Performance (>30 years)
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Model Needs Integrated Multi-scale
Modeling Techniques

* Need to Integrate multi-physics and multi-scale
weld modeling framework for welding process
and structural performance simulations

« Some mechanisms and theories are still not clear
and under development

« Materials properties need to be measured as
model input or for model validation. It involves
significant amount of experimental works.

* |s there a quick way to access weld
performance?
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Integrated Modeling Approach

Process Model (Heat Treatment
and Welding)

Temperature Stress Distribution Macro Service Stress
Distribution (Residual Stress) Environmental Effect

iviicrostructure Modei Advanced
(precipitates size, fraction, MicCresiiEciulie

martensite boundaries fraction) Characterization

Structural Performance Special Design

Model Experiment
(creep rate, creep damage)

Weld Creep Long-Term Reliability
Performance (>30 years)
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Level 1 Model Overview

Structural Performance Weld Creep

Specially Designed

Experiment (DIC) Model Performance
(Creep rate, Creep damage)

T.°F T.°C . . .
Type | Wold o wo 1w Digital Image Correlation (DIC)
J1s00 based mechanical properties
Type ll, Fuslon line MAXIMUM
MPERATURE 113% measurement
i, CGHAZ . .
Trpe ‘ w0« High temperature stress-strain,
Type IV, FGHAZ! D AT " Young’s modulus
ICHAZ b ! 1000 %j FERRITE + CEMENTITE 17
\ BN A N —— » High temperature Creep strain
225 NV S, rovcraon e evolution
— « Measured properties or behavior

Ml M mem  TweNfalure can be fitted to constitutive
: equations or used as direct input in
finite element models.

Weld Joint Strength Reduction Factors (WSRF =
Oeld! Obase meta) fOr CSFE steels can be as low
as 0.5 at ~600°C.
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Creep Strain Distribution after 90 Hours

Standard heat treatment (1040/760/760), expected creep life:~500h
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Strain, %

Creep Strain Evolution
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Will evaluate other continuum creep models, including MPC Omega, Theta,
and Sin-Hyperbolic Models
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FEA model

e [nitial feasibly demonstration of ICWE model to
capture local creep deformation and failure in a
representative cross weld tensile specimen

CE, Max. In-Plane Principal

1.100
g 1.008
| 0.917
T 0.825
0.733 FGHAZ | CGHAZ | WM

0.642
0.550
0.458
= 0.367
0.275
0.183
0.092

Figure 1. Maximum in-plane creep strain in a cross-weld specimen
after 13000 hours creep. (CE is in-plane principal creep strain)

 Further develop and refine the creep testing
technigue. Design new sample geometry for
creep-microstructure correlation.
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Time to Fracture (h)

Minimum Creep Rate in Cross-Weld Creep
Testing
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Level 1 Model Summary

* Level 1 model is based on experimental data and
for weld performance assessment. It iIs more
engineering approach than scientific approach.

* Measured local minimum creep rate can be used
to predict creep life.

* A Long-term weld creep model should consider
the fundamentals of creep deformation, damage
and failure and should be microstructure-based.

 Level 2 model will be developed considering
microstructure evolution and creep deformation

mechanism.
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Strain-Microstructure Correlation
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Coarse carbides in “standard” weld and fine carbides in “modified” weld sorarory
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Level 2 Model Overviews

Microstructure Model Level 2 Model _Advanced
(precipitates size, fraction, Microstructure

martensite boundaries fraction) Characterization

Structural Performance Special Designed

Model Experiment
(creep rate, creep damage)

Weld Creep Long-Term Reliability
Performance (>30 years)

What are the key microstructure features for creep deformation?

How does these key features affect creep properties?
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Previous Study on Grade 91 Show Dispersion of
Fine Carbides is the Key

Table: Microstructure evolution at fine grain heat affected zone

Pre-weld temper Weld (at FGHAZ) PWHT

Standard

(e.g. 7607T/760)

Non-
Standard

(e.q. 650T/760)

(during welding) mmip  (after cooling)

®: M,.C; ®: MX

X. Yu et al., Acta Materialia, vol. 61 (2013) p. 2194-2206.

Carbide size, distribution, coarsening kinetics are very important
microstructure features.

Microstructure gradient (carbides, martensite substructure size) is
also important for weldments
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Structural Performance Model Needs to Consider
Both Power-Law Creep and Coble Creep

Microstructure Model Structural Performance

(precipitates size, fraction, Model
martensite boundaries fraction) (creep rate, creep damage)
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Representative Volume Element Model

Coble Creep ZrB,-SiC ite w/ Grain bound lements
. . rb,-31C compaosite w rain poundaary eleme

applied atgrain MATLAB image !

boundaries processing

* py (Python script)

Power law creep MATLAB parser

applied at grain
interior (including
precipitate ABAQUS
strengthening)
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Power Law Creep and Coble Creep

Power Law Creep of Alloy with Secondary Phase Coble creep

1079 - Threshold Stress
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Both mechanism contribute to creep
o Curmisndy  Cude ool deformation of Grade 91 steels
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Level 2 Model Overviews

___________________________________________________________________________________

Microstructure Model Level 2 Model _Advanced
(precipitates size, fraction, Microstructure

martensite boundaries fraction) Characterization

Structural Performance Special Designed

Model Experiment

(creep rate, creep damage)

Nata e 2 lenigsTerm Relability
Performance (>30 years)
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Microstructure Simulation

 TC-PRISMA is a general computational tool for simulating kinetics of diffusion
controlled multi-particle precipitation process in multi-component and multi-phase alloy
systems.

a TOrr_DDICNA ic hacad nn | annar_.Qerhwiart7z thanrns and Kampmann_Wagner numerlcal

Merged (1: Figure 2 & 1: Figure 3 & 1: Figure 43

1E-1 T T T TN T T T T T T T T T T TN T T T TN T T T T T T T T
1E-2 [T
183 | M23C6
M.C, o |
e T  Initial simulation of P91 tempering.
=T j i ¢ 9Cr-1Mo-0.1C BCC matrix and 3 secondary
=l i phases, M,C,, M,,Cs and cementite were
g 0 i considered.
-l 1 « Temperat760C for 1.5 hours after 1 hour
3 cementite normalizing at 1050C.
1E-10 [~ - . .
el | » The precipitation sequence shows agreement
enl 1 with the simulation from A. Schneider and G.
Inden.
1E-13 | -]
1E-14 |- -
1E-15 |~ -]
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Time, = 1: Figure 2
1: Figure 3
1: Figure 4

Schneider, A., and G. Inden. "Simulation of the kinetics of precipitation reactions in ferritic steels." Acta materi*6?1£ﬁi%)@l9ﬁ)ﬁ%€)%i§ﬁ]['./m(mmnlu’
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Simulation of Carbide Coarsening Process
Shows Good Agreement with Experimental

Only Considered M23C6

Normalized at 1050C
and tempered at 760C.

The predicted precipitate
size shows very good

agreement for 364 hours.

For time longer than
1000 hours, the
predicted radius is
slightly smaller than the
experimental result.
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Plan to use the same modeling approach to predict carbide in weldments.
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Microstructure Model Validation Using
Synchrotron X-Ray

W beamstop
(0,5-2 mm dia)

Specimen Beam from
/ optimized HE
undulator &
.‘\ monochromator
E ~ 50-100 keV
/ ; Translating

SAXS CCD
1=1k, 22.5 um pixels

4

full field lon
(-)llild'-pil'ﬁl-.:.lt'(l il'l"[:l) imaging detector chamber
for WAXS/SAXS 2x2k pixcls, Guard
four 2x2k detectors, 1 pm resolution slits Defining
each 40x40 cm (active) slits

Fig. 1. Schematic layout of Beamline 1-ID at the Advanced Photon Source.
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Precipitate growth, coarsening and dissolution kinetic will be investigated.
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Conclusions

Level 1 model:

« Special designed creep experiment could capture local
creep deformation in a representative cross weld tensile.

 Local creep strain rate can be used in creep deformation
model.

e Level 2 model:

» Established ICWE modeling framework Grade 91 Steel
Weld Creep Performance

« Making progress on structural performance model.

 Precipitation simulation showed good agreement with
literature results.
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