Invent, Develop, Deliver

SOFC Protection Based on a Cost-Effective Aluminization Process

15th Annual SECA Workshop July 23rd 2014

Invent, Develop, Deliver

Scope Of Presentation

1. Introduction and Motivation

2. Dual MCO/Al coated Interconnect Product Development

- Reduction Firing Process Window
- Single-cell Stack Testing
- 3. Refinement of Aluminide Coating Process
 - Microstructural Characterization
 - Compositional Modifications
- 4. Manufacturing Development: Process Simplification and Cost Reduction
- 5. Conclusions

Invent, Develop, Deliver

SOFC Coating Development at NexTech

NexTech has developed a range of coatings to extend the materials lifetime of components used in SOFC systems

MCO coated IC

MCO coated current collector mesh

Catalyst coated mesh

200 un

Invent, Develop, Deliver

MCO Active Area Interconnect Coating

Manganese cobaltite (MCO) coating has been successfully commercialized at NexTech

800 °C and 900 °C in umidified air with applied current density 0.5 A/cm 2

Invent, Develop, Deliver

Aluminide Protection Coating

NexTech is developing an aluminide protective coating to improve high temperature oxidation/corrosion and chromium volatility resistance of metallic components used in SOFC systems

Dual MCO/Aluminide Coated Metallic Interconnect

Coated Balance of Plant Components

Invent, Develop, Deliver

Motivation

NexTech's coating process successfully reproduces the diffusion based surface microstructure produced by more conventional aluminization processes

Vapor Phase Aluminization (VPA) Coating Microstructure on SS316

NexTech's Aluminide Coating Microstructure on SS316

Oxidation Resistance SS304

Invent, Develop, Deliver

Preliminary Results

Utility of aluminide coating demonstrated through enhanced oxidation, chromium volatilization, and coking resistance on commercially important IC and BoP alloys

SS304 with and w/o aluminide coating 500 hours in humidified air at 900 °C

10X improvement oxidation resistance

Cr Volatilization Resistance SS304

SS304 with and w/o aluminide coating 500 hours in air at 900 °C EDS of Cr capturing material

15X reduction chromium volatilization

SS304 with and w/o aluminide coating 24 hours at 600 $^\circ C$ 18 % CH₄, 45 % CO, 37 % CO₂

Excellent coking resistance

Invent, Develop, Deliver

Dual MCO/Aluminide Coating Process Flow

Demonstrated the feasibility of modified reduction co-anneal strategy to apply dual MCO/aluminide coatings

July 25, 2014

Invent, Develop, Deliver

Co-Anneal Temperature Process Window

Process window defined to achieve controlled reduction of the MCO coating to form MnO + Co cermet and required aluminum diffusion profile to form desired aluminide coating

XRD Comparison of Reduced MCO Coatings

Invent, Develop, Deliver

Oxidation/Chromium Volatility Analysis

Co-anneal process does not reduce enhanced oxidation resistance and chromium volatilization resistance of coating

AL 441HPTM with and w/o aluminide coating 1000 hours in air at 900 °C

Invent, Develop, Deliver

Seal/IC Interactions

Aluminide Coating is effective at reducing detrimental glass-seal interactions

XRD spectra of glass-seal/IC

Ferritic SS - AL 441HP with and w/o aluminide coating Composite glass seal (80 % alumina, 20 % PNNL G18 glass) Ageing: 4 hours at 850 °C in air

Invent, Develop, Deliver

Single-Cell Stack Test

Performance of dual MCO/aluminide coated interconnects evaluated in concert with all other components of an actual stack under application relevant conditions

Dual MCO/Al coated IC: Green

Dual MCO/Al coated IC: Reduced

Invent, Develop, Deliver

Single Cell Stack Test Stand Results

MCO/Al dual-coated interconnects demonstrate enhanced stack performance (improved powder density and fuel utilization) vs. no seal area coating

Invent, Develop, Deliver

Single Cell Stack Test Stand Results

Performance improvement is also demonstrated compared to existing seal area coating (CAO)

Invent, Develop, Deliver

Post-Test Analysis: Ferritic SS441

Enhancement of the high temperature performance of coated 441 is based on the formation of a thin alumina surface oxide instead of a thick chromia scale

Uncoated

Coated (Standard Processing)

Ferritic stainless steel - AL 441HP with and w/o aluminide coating 1000 hours in air at 900 °C

Invent, Develop, Deliver

Post-Test Analysis: SS316

Similar long-term microstructural behavior is observed for coated SS316

Coated SS316: As Processed

Al

Al

Coated SS316: t = 500 h

SS316 with aluminide coating 500 hours in humidified air at 900 °C

Invent, Develop, Deliver

Coating Refinement: Compositional Modifications

Process modifications A and B show promise – improved oxidation and chromium volatilization resistance compared to the standard coating process

Oxidation and chromium volatility: 1000 hours in humidified air at 900°C

Microstructural Analysis: Modification A

Process modification A improves the coating's high temperature stability by successfully constraining aluminum in an enriched sub-surface layer and preserving a protective alumina scale

Standard

As-processed

Process Modification A

Post-Oxidation 1000 hours in humidified air at 900°C

Invent, Develop, Deliver

Balance of Plant: Process Development

Prototype component developed to demonstrate the feasibility of the coating on an application-specific component

Prototype 2 ft. long 310 SS coated pipe

Dip-coating application Aerosol spray deposition Roller coating Uncoated

Invent, Develop, Deliver

Process Simplification/Cost Reduction

Performance verification and process improvement qualification conducted to develop costeffective, scalable coating process

Oxidation: 500 hours in humidified air at 900°C

Invent, Develop, Deliver

Coating Refinement: Process Simplification

Similar coating microstructures produced via different application processes and the uniformity of aluminide diffusion layer improved with process modification A

As Processed Coating Microstructures with Alternative Powder Vendor (V2): Standard Process

SS316 - Sprayed

SS316 – Roller Coated

SS310 - Sprayed

As Processed Coating Microstructures with Alternative Powder Vendor (V2): Modification A Process

Invent, Develop, Deliver

Conclusions

- NexTech is developing a cost-effective process for applying protective aluminide coatings to metallic components used in SOFC systems.
- Modified co-anneal operation enables successful co-processing of aluminide coating with commercially available manganese cobalt oxide (MCO) active area coating for dual MCO/aluminide coated interconnects.
- Critical functionality of the aluminide coating demonstrated on a range of commercially important alloys:
 - Enhanced high-temperature oxidation, chromium volatilization, and coking/carburization resistance.
 - Enhanced stack performance (improved powder density and fuel utilization) established for dual MCO/aluminide coated interconnects compared to interconnects with a single MCO active area coating (no seal coating) and NexTech's incumbent CAO seal area coating.
- Compositional process modifications identified to improve long-term, high temperature coating stability.
- Process improvements (process simplification/cost reduction) identified to further enhance value proposition of coating technology.

Invent, Develop, Deliver

Acknowledgements

□ NexTech gratefully acknowledges the support of:

U.S. Department of Energy: Contract Number: DE-SC0008203 Project Manager: Dr. Seth Lawson