Development of Criteria for Flameholding Tendencies within Premixer Passages for High Hydrogen Content Fuels

Motivation

Trends in Advanced Lean Burning Gas Turbines*

- Higher Combustor Inlet Temperatures
- Improved Fuel/Air Mixing
- Risk of Auto-Ignition/Flashback
- Role of Fuel Type/Composition

Major Question

If a Reaction is Initiated in the Premixer,
Will the Reaction be "Held" on a Wall Recess?

^{*} Stationary Gas Turbine Engines

Motivation

Double Skin Impingement Cooled Combustor High Hydrogen Main Burner Content Pilot Burner **Fuels** On N.G. injectors **PreChamber** Radial Swirler Desired: Tools to guide premixer design for robustness relative to flame attachment and disgorgement

Literature

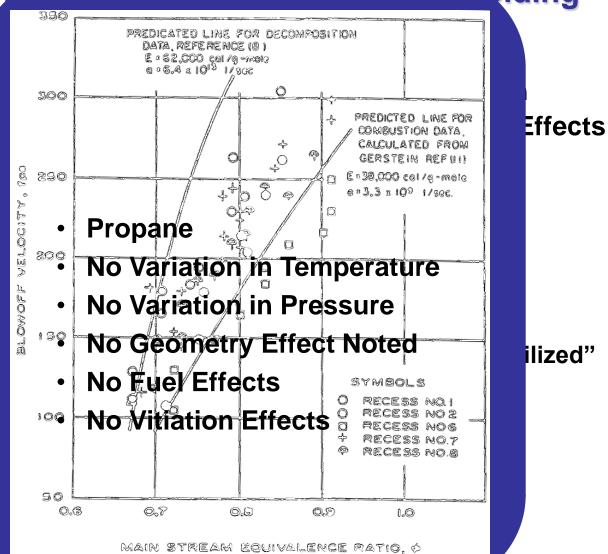
Reference	Geometru	Fuel	Operating Conditions	Blockage Dimensions	Measurement s Made	How	Keywords	Comments
	Comeny		Contamons	- Dilligrapions	Flammability,	11011	1107110100	
					Pressure.			
			294-623K.1		Excess		Flammability	
AL 1007(1)		CDA DO CODO		AUA.				
Ale, 1997 (1).		CH4, H2, C3H8	atm	N/A	Oxygen		Limits	
Balachandar				ЫВ = 0.1, 0.13, 0.19, 0.24,	Cavitation wrt			Cavitation in Water
. 1991 (2).	_	N/A	N/A	0.325, etc.	Re			Tunnels
Baum, 1995							Numerical	
(3).		HC Flames	4-8 m/s	N/A			Analysis	
(0)		1101101100			Width of		1111117212	
	$\overline{\langle}$				recirculation eddy and mass flow		Flameholding, Flame stabilization.	
D 1072	2			(JID) - 0.E4				
Beer, 1972				(d/D) = 0.54,	rates wrt		blockage ratio,	
(4).				0.25, 0.11	blockage ratio		ignition time	
Beer, 1965							Residence	
(5).		Coal	40.	N/A			time	
			4-9 m/s,	9FH's w/63,73,	Blowout			
			Ambient Temp.	& 85% blockage	flammability			
			and Press., Re	and 2	limits wrt ref			
Bosque,			= 10000-	counterbore	velocity and			
1983 (6).		Propane	20000	sizes	Re			
				Thickness of	Blowoff			
			100-250 ft/s,	luminous zone	velocity, flame		Wall Recess,	
Choudhury,			1300-1500K, ø	from 0.07-0.12	front angle,		flame	
1962 (7).		Propane	= 0.7-0.9	in.	turbulence.		stabilization	
	(222)		35 m/s,	75%	,			
			0.3MPa, 600-	flameholder	NOx emission			
Copper,	0000		1000K, φ = 0.6-	blockage (water	index, CO			
1980 (8).	(000)	Jet A Fuel	0.72	cooled)	emission index		Flameholding	
1300 (0).		oethi dei	35 m/s,	coolea)	emissionmidex		Extinction of	
Egolfopoulos			0.3MPa, 200-		Extinction		premixed	
, 1997 (9).		Methane	1700K, ϕ = 0.70		Strain Rates		flames	
, 1001 (0).		rietrialie	1100K, W = 0.10		Effect of		names	
			Turbulence		Exhaust gas			
			intensity = 0 -		recirculation			
			45 cm/sec. Re		due to			
			= 0-150, EGR		increase in		Quenchina	
			from 0 to 30%,		single wall		distance,	
Gat, 1980		l	T=340K,		quenching		Turbulence	
(10).		Methane	P=1atm		distance.		intensity	
		aircraft fuels						
		(petroleum, JP-	L		_			
		4, ASTM Jet-A,	P = 3-30 atm, T		Emission			
		Diesel No. 2, oil	= 475-800 K,		reductions for			No results, just
Jones, 1978		shale, coal) and	f/a = 0.12 to		different			refers to studies to
(11).		propane	1.51		combustors			be performed
			Volumetric					
			percentages of					
			methane in air		Extinction		Flammability	
1		I	= 4.0-6.53.		Strain and		Limits.	
					Stretch Bates		extinction	
			flame velocity =		Stretch Rates,		extinction	
Ju, 1997 (12).		Methane			Stretch Rates, Fraction of heat loss		extinction limits, premixed flames	

Case		\bigcirc						Introduction to flameholding, bluffbodyflame stabilization.
Numerical analysis of 30 - 42 m/s, 1750 k max, Co = 10, 125-0, 151 Numerical analysis of 30 - 42 m/s, 1750 k max, Co = 10, 125-0, 151 Numerical analysis of 30 - 42 m/s, 1750 k max, Co = 10, 125-0, 151 Numerical analysis of 30 - 42 m/s, 1750 k max, Co = 10, 125-0, 151 Numerical analysis of 30 - 42 m/s, 1750 k max, Co = 10, 150 k max, Co = 10, 150 k to max Numerical analysis of 30 - 42 m/s, 1750 k max, Co = 10, 150 k to max Numerical analysis of 30 - 42 m/s, 1750 k max, Co = 10, 150 k to max Numerical analysis of 30 - 42 m/s, 1750 k max, Co = 10, 150 k to max Numerical analysis of 30 - 42 m/s, 1750 k max, Co = 10, 150 k to max Numerical analysis of 30 - 42 m/s, 1750 k max, Co = 10, 150 k to max Numerical analysis of 30 - 42 m/s, 1750 k max Numerical analysis of 30								flammability limits,
Numerical analysis of 30 - 42 m/s .1750 K geometry, Rate of mass Trapped Analysis Trapped Numerical geometry, Rate of mass Trapped Numerical geometry, Rate of mass Trapped Numerical geometry, Rate of mass Trapped Notes N								
Numerical Analysis of 30				Niii				
Activation Act								
Name								
(14). Propane 0.125-0.151 remaining in Vortex Vortex	V-11- 1998							
20-120 NLM, 39.5 to butane mixture with air, 1 = 340 K, Pi = 0.10 Mpa Swirl Chamber delay times Weak and strong interactions of literacting filames for ocertain temperatures distance mixture with air, 1 = 0.1700 K, Axial temperatures 1 = 0.170			Propage					
Mole fractions of 4 to 6 ½, T = 0.10 Mpa	(11)		riopane			remaining in	Torten	
T = 340K, P = 0.10 Mpa				99.5% butane				
(15). Note Comparison Co				mixture with air,				
Mole fractions of 4 to 6 ½, T = 0-1700K, Axial velocity = 100 and flames for certain temperatures and flames for other acting position. Glames for certain temperatures and flame interacting position. Glames for different position. Glames for certain temperatures and flame interacting position. Glames for different position. Glames for certain temperatures and flame interacting position. Glames flames distance for different position. Glames flames distance for different position. Glames flames flames distance for different position. Glames flames flames flames flames distance for different position. Glames flames flam	Kojima, 1993			T; = 340K, P; =		autoigniton		
Mole fractions of 4 to 6 %, T = 0-1700K, Axial velocity = 100 velocity, Fuel Slockage, 1379 (13). Lefebvre, 1379 (13). Velocity, Fuel Slockage, 1380 (13). Iso-Octane, Oils Turb Int. = 290K, 1392 (20). Velocity, Fuel Slockage, 1392 (20). Velocty, Fuel Slockag	(15).		n-Butane	0.10 Mpa	Swirl Chamber			
Mole fractions of 4 to 6 ½, T = 0-1700K, Asial velocity = 100 Asial velocity Asial velocity = 100 Asial velocity = 100 Asial velocity Asia								
Mole fractions of 4 to 6 ½, T = 0-1700K, Axial velocity = -100 velocity = -100 and flame interacting flames of certain velocity = -100 to 50 cm/s D-30 m/s, 0.08-0.08-0.5 arm, Turb propane int, 2.5-15½. Lefebure, 1376 (17). Propane S76K, Turb Int. S76K								
Certain temperatures and flame position. Extinction of interacting				M-1-6				
Continue								
Velocity = -100							Futination of	
(16). Methane to 50 cm/s position. Glames distance for different pressures, equivalence increases with increase in Turb pressures, equivalence increases in Turb increase in Turb distance for different pressures, equivalence increase in Turb increase in Turb distance for different pressures, equivalence increases with increase in Turb increase in Turb increase in Turb distance or action of the pressures, equivalence increases with increase in Turb increase in Tu	I oo 1994							
Cluenching distance for different pressures, equivalence increases with increase with increases with increase wi			Methane					
Lefebvre, 1376 (17). Propane Lefebvre, 1379 (18). Lefebvre, 1379 (18). Lefebvre, 1392 (20). Lefebvre,	(10)							distance
D-30 m/s, 0.08						distance for		increases with
Description						different		increase in Turb
1976 (17)								
10-100 m/s, 0, 2								
1.3	1976 (17).		Propane			ratios	distance	important.
T = 300, 370 Flameholder Flameholder Flow until							1.1	
A30,500, Flameholder Velocity, Fuel Slockage, Flameholding Velocity, Fuel Slockage, Flameholding Velocity, Fuel Slockage, Flameholding Velocity, Fuel Slockage, Flameholding Velocity, Fuel Slockage, Velockage, Vel						T D		
Propane (gaseous) 576K, Turb. Int. diameter = 2-12 Flow until Blockage, Flame holding Plame holding Weak Lefebure, 1980 (19). PS (19).		< >			Flamobolder			
1979 (18) (gaseous) = up to 15 ½ cm, 4-34 ½ extinction Flame holding	Lefebure	~	Propage					
FiA(by w) 0.086-0.073, 15-75 m/s, 0.2-1.0 x10 ⁸ Nim ² , 1								
15-75 m/s, 0.2 - 1.0 x10 ⁸ N/m ²	10.10(10)		(3000000)					
10 x10 ⁶ N/m ² , Bg = (cone Town) Floy child Flow until F							Weak	
Lefebvre, 1980 (19). Iso-Octane, Oils Turb Int. = 2- Color, 1980 (19). Iso-Octane, Oils Turb Int. = 2- O.04-0.34 extinction Flame holding Flame holding		1				Temp, Press,		
1380 (19). Iso-Octane, Oils Turb Int. = 2- 0.04-0.34 extinction Flame holding Weak St. nm, FH angle = 45, 60, 0.26, Ti = 650- 90°, FH Velocity, Fuel Slockage, 1992 (20). Solid		$ \langle \ \ \rangle$					Limits,	
FH Width = 25.4 65.1 mm, FH and FH width = 25.4 65.1 mm, F						Flow until		
Mach #= 0.18- 0.26, Ti= 650- 0.5 mm. FH angle = 45, 60, Temp, Press, Velocity, Fuel Flow until Flow unti	1980 (19).		Iso-Octane, Oils	Turb Int. = 2-		extinction	Flame holding	
Mach # = 0.13- angle = 45, 60, Temp, Press, Units, Education Limits, Blockage, Extinction Limits, Blockage, Extinction Limits, Blockage, Extinction Limits, Blockage, Extinction							l	
Defebure JP5 (liquid 850K, \$\phi = 0.15 - 190°, FH Blockage = Flow until Blockage Flow until House Flow until Blockage Flow until House				l				
Lefebure, JP5 (liquid 850K, \$\phi = 0.15- Blockage = Flow until Blockage, 1392 (20). State								
1992 (20). kerosene) 0.6 0.125-0.32 extinction Flame holding Veak Chapter has many figures, equations, and subject matter Lefebure,	Latebase		IDE (II					
Weak Chapter has many Extinction if figures, equations, Limits, and subject matter Lefebure, Blockage, pertinent to								
Extinction figures, equations, and subject matter Blockage, pertinent to	1002 (20).		keiosene)	0.0	0.125-0.32	exunction		Chanter has manu
Limits, and subject matter Lefebure, Blockage, pertinent to								
Lefebure, Blockage, pertinent to								
1983 (21). N/A N/A Flame holding project.							Blockage,	pertinent to
	1983 (21).		N/A	N/A			Flame holding	project.

Literature

Lefebvre,			47-78 m/s, T = 773, φ = 0.6-	Single-Sided FH 15-90o, and 60o		Flameholding, Blockage	Prediction of drag coefficient for
1986 (22).		Jet A Fuel	1.2	V-Gutter	Velocity Pressure,	effects	certain blockage
Lefebure, 1975 (23).		Propane	up to 50 m/s, φ = 0.5-2.0, 0.17 atm, Turb. Int. = 1-22%		Temperature, Velocity, quenching distance, minimum ignition energy	Quenching distance, Minimum ignition energy	
Turns, 1996 (24).							Introduction to Combustion subjects such as flameholding, bluffbody flame stabilization, flammability limits, quenching, etc.
Little, 1979 (25).		N/A	100 ft/s, Re = 0.64 × 10 ⁶	Spindal dia = 3/8 in to 11/8 in	Afterbody Drag, Velocity, shear stress, flow visualization	Trapped vortex	
Maekewa, 1975 (26).	N/A	Methane	P=0-0.4 kg/cm²,	N/A	Pressure, Temperature, Velocity, quenching distance	Flame Quenching	
Mastorakos, 1997 (27).	N/A	Non-Premixed	N/A	N/A	N/A	Autoignition, Direct numerical simulation, conditional moments, modeling	
Nair, 1973			Up to 2 atm, φ=		Pressure, quenching	Flame	
(28). Noda, 1995 (29).		Butane N/A	0.85-1.1, 300K Turbulence intensity = 0-30%	Blockage Ratio = 0.02-0.16	distance Drag Coefficient, Blockage factor, downstream surface drag	Quenching Blockage effects	
Oancea, 1997 (30).		Methane, Propane	φ = 0.73-1.44, P = 40-104 kPa, T = 298-		Pressure, quenching distance	Flame Quenching	
Plee, 1978 (31).		Propane (gas and liquid), Jet A, JP 4, DF 2	10-100 m/s, 0.2- 8 atm, T = 300- 800K	45° conical baffle, tube-and disc, disc-in- duct	Pressure, Temperature, Velocity, Lean blowoff limit		

					Pressure,		
					Temperature,		
					Velocity,		
Roberds.			144-319 ft/s.		Residence		
1989 (32).		N/A	13.5-14 psi		time		
1000 (02)			10.0 11 ps.	Wire Grid (60,	111112		
				73%).			
				Perforated plate			
				(70-80%).			
				multiple cone	Pressure,		
			D: 40	(70-80%). Vee			
			Pi = 10 atm, φ =		Temperature,		
			0.3-0.7, Ti =	Gutter (70-	Velocity, NOx,		
Roffe, 1978			800K, 20-35	80%), Single	CO, HC		
(33).		Propane	m/s	Cone (70-80%),	emissions		
	9/_						
			680 K, 8.9 m/s				
			(Re # = 660).		Pressure,		
			Airflow rate =		Temperature,		
Shih, 1996	9		1.2 SCFM. • =		Velocity, NOx		
(34).		Methane	0.4-1.1		emissions		
(34).		riediane	10-15.6 m/s.		emissions		
			Rotational				
	- N		speed = 0-840			_	
						Dump	
	=		rpm, Inlet	Diameter of		Combustor	
	/		centerline Turb	combustor 38.1-		flows,	
			= 4.6-17.6 x	43.2 mm, Step		reattachment	
So, 1988	γ		10 ² , Re = 3.1-	height = 10.15-		length, rotation	
(35).		N/A	4.5 ×10 ⁻⁴	12.7 mm		effects	
						Mixing,	
				40 mm for inner		residence time	
	_ هار			portion, 80 for		distributions.	
Van der	≡ < 3 3			outer, 155 for		swirl flow.	
Lans, 1997	100			largest, 25o		modeling,	Cold, confined
(36).	-	N/A		iargest, 250 inclines		modeling, burner	cola, confinea swirl
(30).		DVIA		inclines		Flammability	SWIII
						Characteristics	
		I				, autoignition,	
		l				and burning	
						rate of 200	
Zabetakis,		200 Combustible				rate of 200 combustible	
Zabetakis, 1965 (37).		200 Combustible gases				rate of 200	
					Pressure,	rate of 200 combustible	
					Temperature,	rate of 200 combustible	
1965 (37).			Up to 50 atm, φ			rate of 200 combustible	
			Up to 50 atm, φ = 0.2-2.0, 650-		Temperature,	rate of 200 combustible	


Large Body of Colding

Findings

- Only ~
- Most F
- Most S

Studies of

- Cambe
 - Wal
 - Lim
 - Sug

Large Body of Literature on Blowoff/Flameholding

Findings

- Only ~25% Focus on Natural Gas, <10% Hydrogen
- Most Focus on Centerbody Stabilization vs. Wall Effects
- Most Seek How to Stabilize, Not How to Avoid

Studies of Particular Relevance

- Cambel, et al. (1957, 1962)
 - Wall Perturbations
 - Limited Conditions
 - Suggested Mechanism "Similar to Centerbody Stabilized"
- Correlation work for CB Stabilized
 - Damköhler scaling seems to capture behavior
 - e.g., work of Lefebvre, others
 - e.g., Shanbhogue, Husain, and Lieuwen

Major Question

If a Reaction is Initiated in the Premixer, Will the Reaction be "Held" on a Wall Recess?

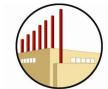
Related Question #1

To What Extent do "Damköhler Type" expressions (based mainly on bluff body stabilized flames) apply to "small" wall recesses and/or perturbations?

Major Question

If a Reaction is Initiated in the Premixer, Will the Reaction be "Held" on a Wall Recess?

Related Question #2


If the reaction holds on a wall feature, what is required to dislodge it (experience suggests strong hysteresis)

Major Question

If a Reaction is Initiated in the Premixer,
Will the Reaction be "Held" on a Wall Recess?

Related Question #3

What is role of T, P, fuel composition, and level of vitiation?

Major Question

If a Reaction is Initiated in the Premixer, Will the Reaction be "Held" on a Wall Recess?

Related Question #4

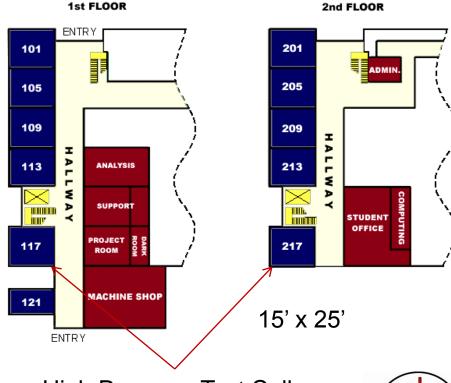
How does the geometry of the wall feature affect the flameholding tendency?

Project Goal

Develop design guides to predict flameholding tendencies within premixer passages as a function of:

- Pressure
- Temperature
- Fuel Type/Composition
- %O2 in the air (vitiation levels)
- Geometry Features

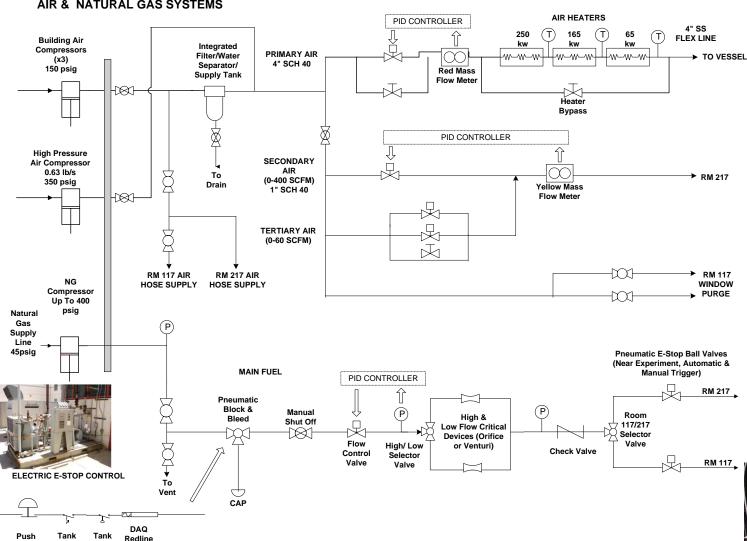
Approach and Schedule


*	1	M13 *	M19 *	M25		M31
*		*	*			
	<u> </u>					
					•	

Approach

- Preparation
 - Fuel/Module Selection
 - Fabrication
 - Diagnostics / Rig Setup
 - Commissioning
- Experimental Studies
- Analyze and Correlate Results

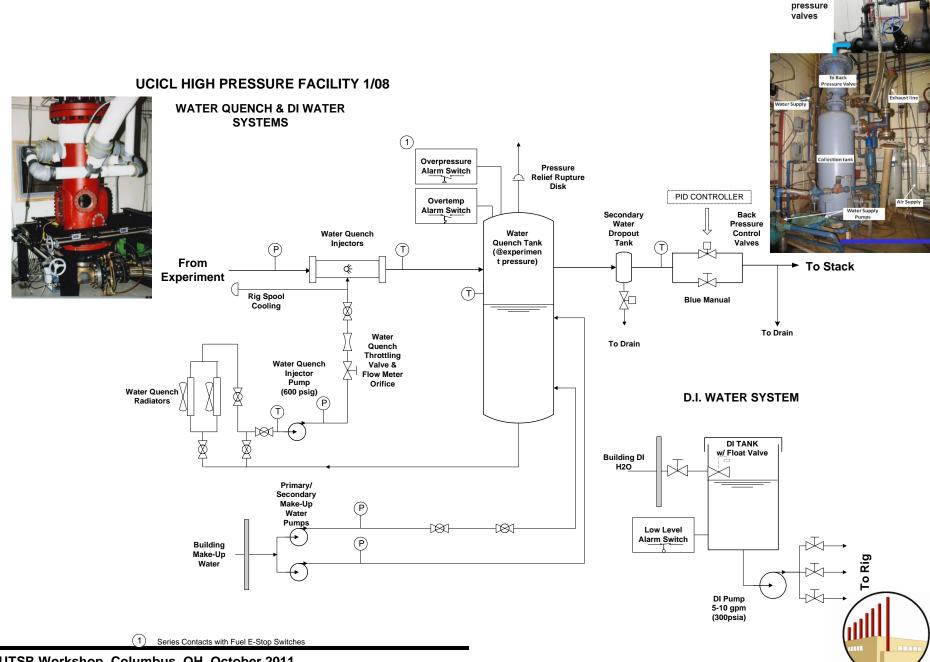
The test rig will leverage existing high pressure testing capability developed through support of NASA, DOE, and industry



High Pressure Test Cells

4 lb/s air; 1000 deg F preheat; diluents (stored tanks) Pressures to 18 atm

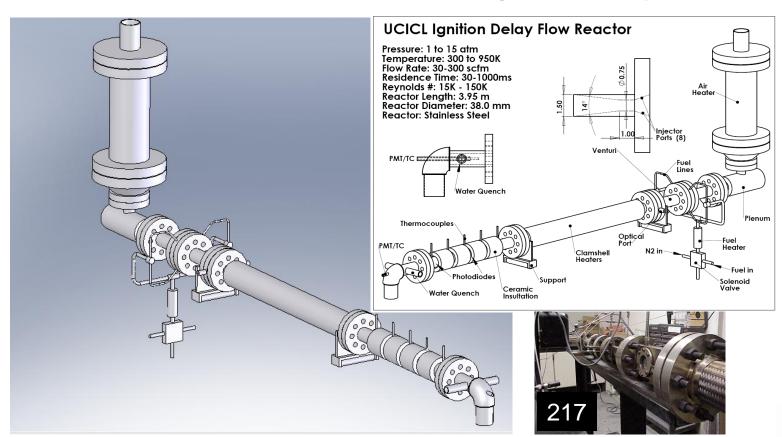
UCICL HIGH PRESSURE FACILITY 1/08 AIR & NATURAL GAS SYSTEMS



Redline

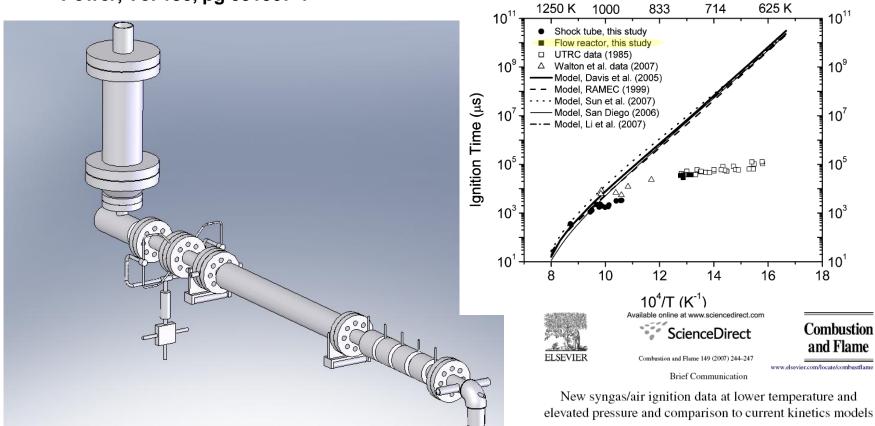
Relay

TC


Button

Back

Apparatus


 Modular, leveraging elements of a flow reactor used for UTSR, CEC, and EPRI supported ignition delay studies

Apparatus: Hydrogen/Air ignition

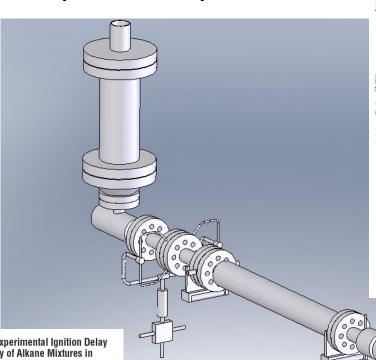
Beerer & McDonell (2008): Autoignition of Hydrogen and Air inside a Continous Flow Reator with Application to Lean Premixed Combustion, J. Engr Gas Turb Power, Vol 130, pg 051507-1

Eric L. Petersen a,*, Danielle M. Kalitan a, Alexander B. Barrett a, Shatra C. Reehalb, John D. Mertensc, David J. Beererd, Richard L. Hack d, Vincent G. McDonell d

10⁷

10⁵

 10^{3}


Combustion

and Flame

18

Apparatus: Alkanes

Beerer and McDonell (2010, 2011)--alkanes

gnition Delay C1, C2 Methane + 90/10 Methane/Ethane . 90/10 Methane/Ethane 70/30 Methane/Ethane ■ 90/10 - Methane/Propane Ethane 70/30 - Methane/Propane 1.15 1.20 1000/T_{mix} (1/K) 1000/T_{mix} (1/K) Available online at www.sciencedirect.com

ELSEVIER

ScienceDirect

Proceedings of the Combustion Institute

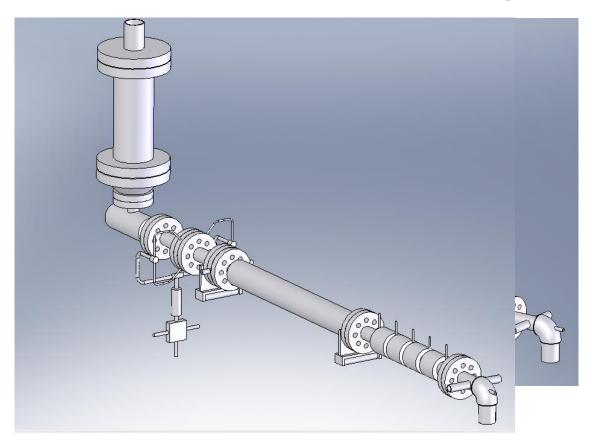
Proceedings of the Combustion Institute 33 (2011) 301-307

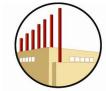
www.elsevier.com/locate/proci

An experimental and kinetic study of alkane autoignition at high pressures and intermediate temperatures

David J. Beerer, Vincent G. McDonell*

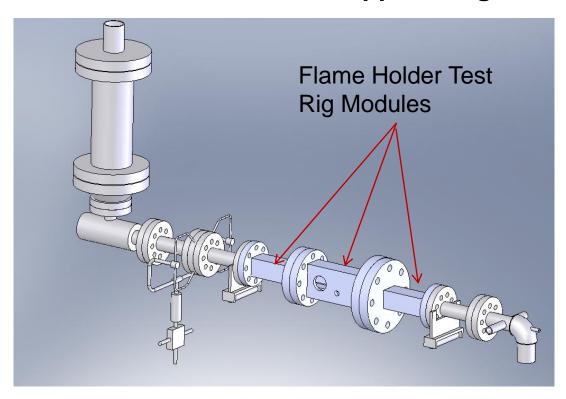
All tabulated data available In supplemental material 997 ignition measurements


An Experimental Ignition Delay Study of Alkane Mixtures in Turbulent Flows at Elevated Pressures and Intermediate Temperatures

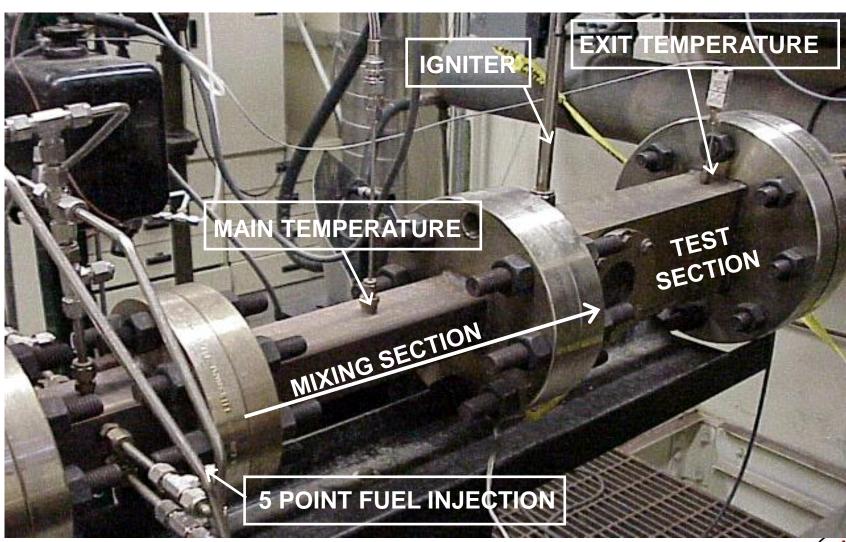

/incent McDonell

J. Engr Gas Turb Power (2010)

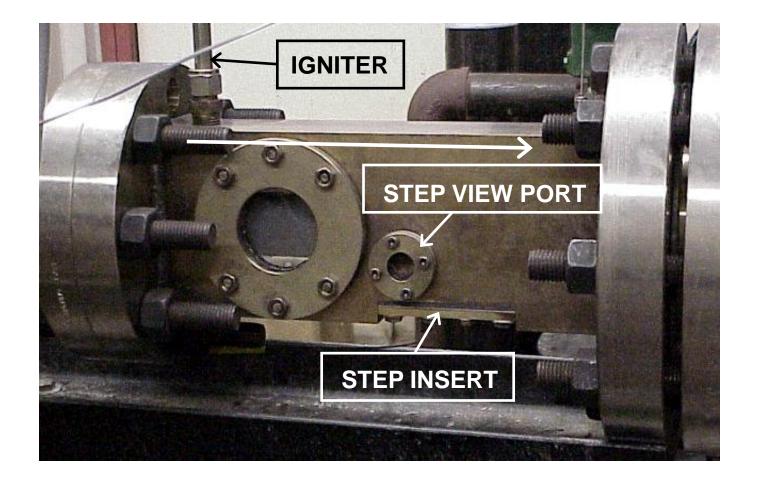
Apparatus

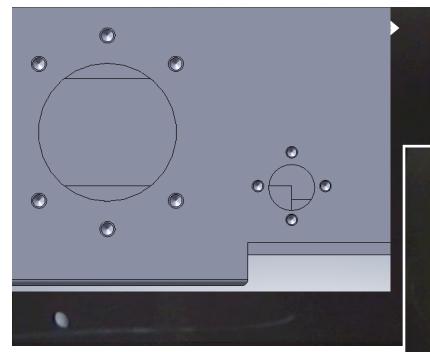

 Modular, leveraging elements of a flow reactor used for UTSR, CEC, and EPRI supported ignition delay studies

Schematic


 Modular, leveraging elements of a flow reactor used for UTSR, CEC, and EPRI supported ignition delay studies

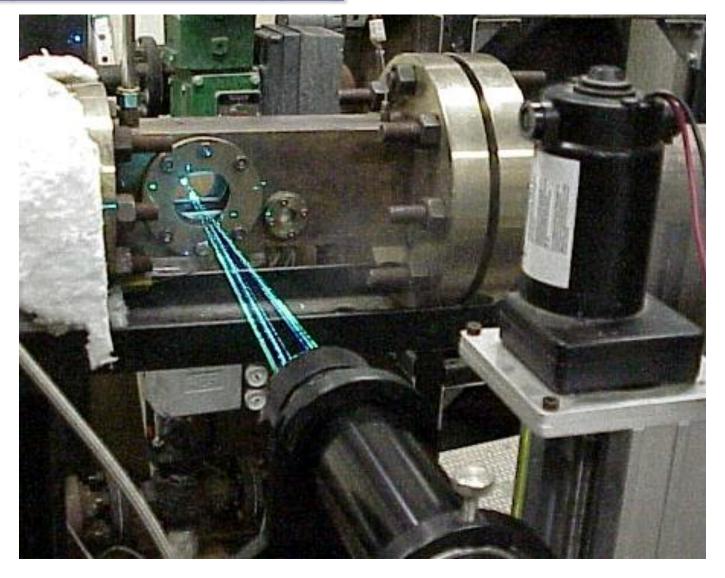
Existing Test Section available from a short duration industry study in early 2000's


- --actually predated flow reactor configuration
- --2.5" semi-square cross section


Legacy Test Section

Legacy Test Section

TORCH IGNITER ON

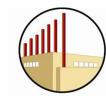

Current Project: High Speed OH* Imaging will be used as well Phantom 7.2 CMOS w/ external intensifier

Flame Holding

Velocity/Turbulence Mapping

Approach

- Preparation
 - Fuel/Module Selection
 - Fabrication
 - Diagnostics / Rig Setup
 - Commissioning
- Experimental Studies
- Analyze and Correlate Results

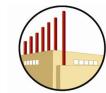

Fuel Space

Fuel Space

Table 1. Summary of Fuels of Interest (clean, dry, mole fractions).

Constituent	H ₂	со	CH ₄	C₃H _{8/} C₄+	CO ₂	N ₂
Hydrogen (H2)"	100-90	0-10	0	0	0	0
Coal/Petcoke syngas ("Syngas") — nominal values shown	37	46	1	0	14	2
N2 diluted coal/petcoke syngas² ("Dilute Syngas")—nominal values shown	23	31	1		10	35
LNG (LNG)/Shale Gas*	0	0	90	5/5		

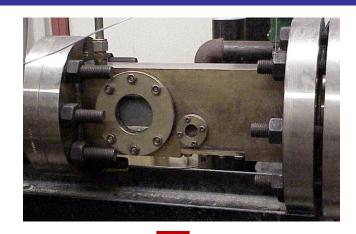
^{*}For pipeline injection. For onsite use can find 50%+ ethane

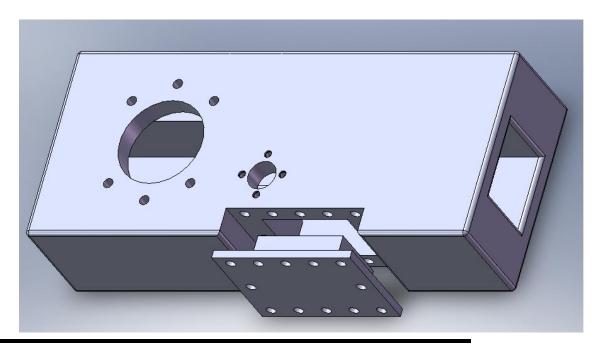

Operating Conditions

Operating Conditions

Table 2. Operating Conditions and Parameter List.

Parameter	Units	Minimum	Center	Maximum	Comment
Pressure	atm	1	7	14	
Temperature	Deg F	500	750	1000	
Turbulence Intensity	% of the Mean	5	10	15	
Overall Equivalence Ratio	None	0.6 (or low limit)	0.8	1.0	
Freestream Velocity	m/s	40	70	100	
%O2 (diluents will be CO2, N2)	% vol				

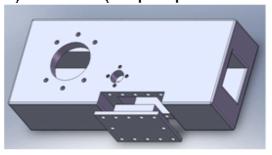

Autoignition may constrain some of this space

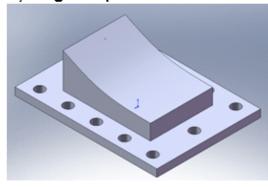


Test Module Selection

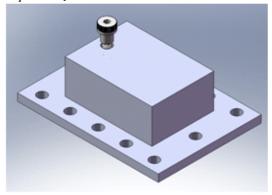
Test Section

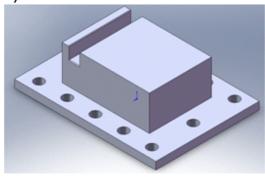
- Will consider modified version to allow top access
- Downstream ignition?
- Replace 5 point fuel injection with ignition delay venturi injector

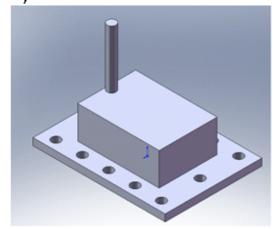


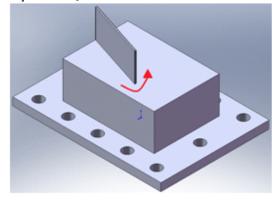

Test Module Selection

Potential Geometries


a) Baseline (step expansion

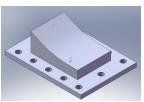

b) Angle Expansion

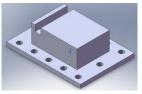

b) Bolt/Rivet

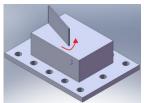

c) Channel

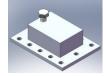
d) Strut

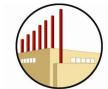
e) Vane/Strut




Test Module Selection


Potential Geometries





Will build 3
(legacy parts available)
Will build 3
Will use 0.25" expansion height
overall with different angles. 90
degree corresponds to step
expansion case above
Will build 4
Will build 4
Full length corresponds to
th extending across the test section
opening to the far wall. Shape can
be round or square or vane. TBD
with input from OEMs
Will build 4

Approach

- Preparation
 - Fuel/Module Selection
 - Fabrication
 - Diagnostics / Rig Setup
 - Commissioning
- Experimental Studies
- Analyze and Correlate Results

Legacy Tests: Go/no go Findings

Limited studies carried out in 2002 examined "go/no go" type tests to establish max step feature for natural gas premixing to disgorge

- Only step "expansion" geometry studied
 - Test intended to evaluate → do 1/32" or 1/8" steps hold flame?
- Fuel/Velocity Distributions non-ideal (post test)
- Results can serve as a baseline for the current effort
- Also provide "seed results" for correlation evaluation
 - ANOVA

Test Plan

PARAMETER	UNITS	MINIMUM	CENTER	MAXIMUM
Pressure	atm	2	4.5	7
Temperature	deg F	600	825	900
	(K)	(588)	(714)	(755)
Equivalence Ratio		0.6 (or limit)	0.8	1.0
Freestream Velocity	ft/s	100	150	200
	(m/s)	(30.5)	(45.7)	(61.0)
Step Heights	in	0.0313	0.125	0.250
	(mm)	(0.79)	(3.18)	(6.35)

Do steps hold flame?

Test Matrix	Temperature degrees F 600	Pressure Atm	Velocity ft/s 100	Equiv. Ratio	Expansion inches 0.25"
	600	2 2	100	0.73	0.25"
Hold/No Hold Test	600	2 2	100	1	0.25"
 1 mm step didn't 	600 600	2 2	200 200	0.6	0.25" 0.25"
	600	7	100	1 0.6	0.25"
hold flame	600	7	100	1	0.25"
 3.2 & 6.4 mm did 	600	7	200	0.6	0.25"
	600 900	7 2	200 100	1 0.6	0.25" 0.25"
 LBO point noted 	900	2	100	1	0.25"
as "afterthought"	900	2	200	0.6	0.25"
as afterthought	900	2 7	200	1	0.25"
	900 900	7	100 100	0.6 1	0.25" 0.25"
LBO Point:	900	7	200	0.6	0.25"
	900	7	200	1	0.25"
4 factor	600	2	100	0.6	0.125"
2 level	600	2 2	100	0.67	0.125
	600	2	100	1	0.125"
Full factorial	600	2	200	0.6	0.125"
w/Contornaints	600 600	2 7	200 100	1 0.6	0.125" 0.125"
w/Centerpoints	600	7	100	1	0.125"
	600	7	180	0.6	0.125"
Allowa ANOVA	600	7	180	1	0.125"
Allows ANOVA	825 900	4.5 2	150 100	0.8 0.6	0.125" 0.125"
	900	2	100	0.64	0.125"
	900	2	100	1	0.125"
	900 900	2 2	200 200	0.6 1	0.125" 0.125"
	900	7	100	0.6	0.125 0.125"
	900	7	100	0.67	0.125"
	900	7	100	1	0.125"
	900 900	7 7	200 200	0.6 1	0.125" 0.125"
	300	ı	200		0.123

Analysis of Variance

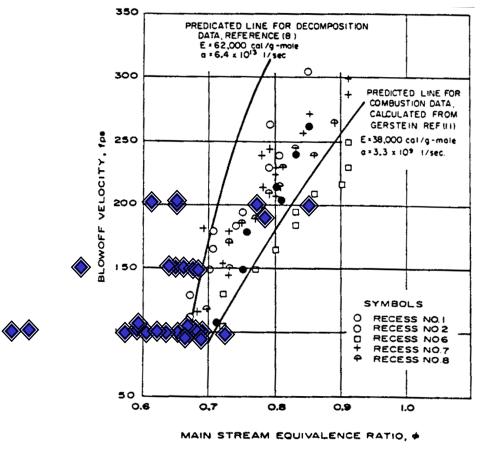
Results from ANOVA

WE = 0.99 - 0.00017*Temp - 0.091*Pressure - 0.0013*Velocity + 0.0006*Pressure *Velocity

- Step Height not statistically significant (0.125/0.25" step)
- Effect of velocity depends on pressure
 - Low pressure, velocity has no effect
 - High pressure, significant velocity effect
- Lack of fit is significant
 - Indicative of non-linear behavior
 - Evaluation of log/In response still indicates lack of fit
- Insufficient results to generate strong conclusions
 - Need for additional measurements
 - More systematic studies

Legacy Tests: Correlation?

Limited studies carried out in 2002 examined "go/no go" type tests to establish max step feature for natural gas premixing to disgorge


- Only step "expansion" geometry studied
 - Test intended to evaluate → do 1/32" or 1/8" steps hold flame?
- Fuel/Velocity Distributions non-ideal (post test)
- Results can serve as a baseline for the current effort
- Also provide "seed results" for correlation evaluation
 - e.g., vs Cambel?

Analysis

Cambel, et al. (1957, 1962)

- PROPANE
- NO TEMP VARIATION
- NO PRESSURE VARIATION

2002 STUDY

Fuel Distribution?

Legacy Tests: Correlation?

Limited studies carried out in 2002 examined "go/no go" type tests to establish max step feature for natural gas premixing to disgorge

- Only step "expansion" geometry studied
 - Test intended to evaluate → do 1/32" or 1/8" steps hold flame?
- Fuel/Velocity Distributions non-ideal (post test)
- Results can serve as a baseline for the current effort
- Also provide "seed results" for correlation evaluation
 - e.g., Ballal and Lefebvre, (1979)

$$\phi_{LBO} = \left\{ \begin{array}{c} 2.25 \left[+0.4U + u' \right] \\ P^{0.25} T_o e^{-0.150} D_c - B_g \end{array} \right\}$$

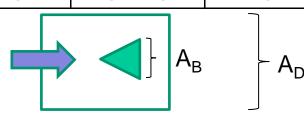
Essentially Damköhler scaling (reaction time/residence time)

0.16

Test Matrix

$$\phi_{LBO} = \left\{ \frac{2.25 \left[+0.4U + u' \right]}{P^{0.25} T_o e^{\Phi_o/150} D_c - B_g} \right\}$$

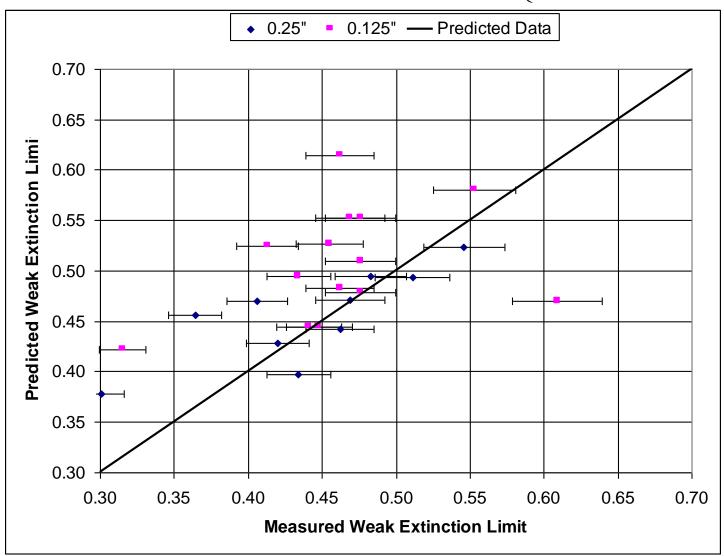
PARAMETER	UNITS	MINIMUM	CENTER	MAXIMUM
Pressure	atm	2	4.5	7
Temperature	deg F	600	825	900
	(K)	(588)	(714)	(755)
Equivalence Ratio		0.6 (or limit)	0.8	1.0
Freestream Velocity	ft/s	100	150	200
	(m/s)	(30.5)	(45.7)	(61.0)
Step Heights	in	0.0313	0.125	0.250
	(mm)	(0.79)	(3.18)	(6.35)


Step Heights:

B&L blockage ratio A_B/A_D: 4-34%

Current "blockage" ratio <1%

Temps: B&L 575 K max


Fuel: B&L Propane

Ballal and Lefebvre (1979)

$$\phi_{LBO} = \left\{ \frac{2.25 \left[+ 0.4U \left(+ u' \right) \right]}{P^{0.25} T_o e^{\P_o/150} D_c \left(-B_g \right)} \right\}$$

Fuel/Air control needs improvement (already in place)

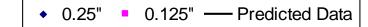
Additional Considerations

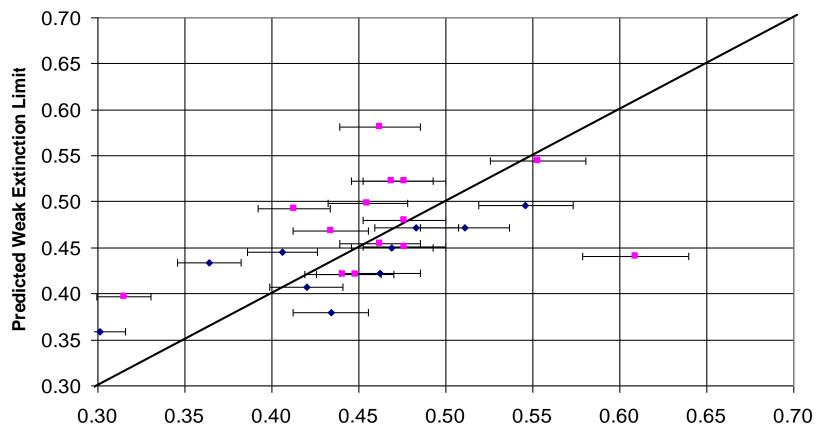
Consider Quench Distance within Blockage Ratio

$$d_q = \frac{10\alpha}{S_T - 0.63u'}$$
 u'>2S_L

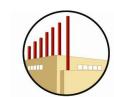
Klimov expression (1983) used for ST

BTW-- $d_q \sim 0.1$ mm compared to 0.8 mm for smallest step


BTW—what is S_T ? (results expected from other UTSR efforts)


- Fuel type: Reaction Order of Methane vs Propane
 - Pressure Dependency of Reaction Rate?
 - Analysis suggests P^0.3 improves fit
 - Lefebvre's original data suggested very small pressure dependency (unexpected)

Additional Considerations Included


 $\phi_{LBO} = \left\{ \frac{2.25 \left[+0.4U + u' \right]}{P^{0.3} T_o e^{\Phi_o/150} D_c \left(-B_g \right)} \right\}$

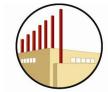
Measured Weak Extinction Limit

0.25" better behaved, yet still fairly poor agreement

Findings from Limited Natural Gas Data

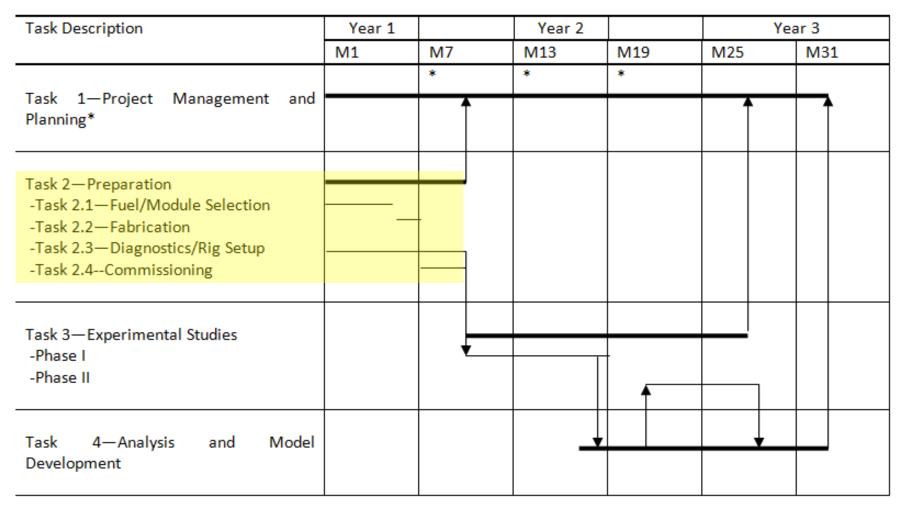
Steps less than 0.0313" didn't hold flame

- Quenching Limit?
- Role of conditions, fuel composition?
- Experiment Issues (fuel distribution, fuel/air control)


DOEx and Analysis of Variance

- No step effect noted (consisted w/Cambel)
 - Pressure, Velocity, Temperature, PV Interaction
 - Insufficient data to utilize ANOVA reliably

Correlation effort


- Similar trends to Cambel, but differences noted
 - Different fuels, etc
- B&L similar trends, but not good agreement
 - Different fuels, temperatures
 - Large bluff body vs small wall features

Research Questions remain!

45/46

Current Project

mcdonell@ucicl.uci.edu; 949 824 5950 x121

