the Energy to Lead

Post-combustion CO₂ Capture Using PEEK Hollow Fiber Membrane Contactors

Shiguang Li, S. James Zhou, Travis Pyrzynski, and Howard Meyer, *GTI*Yong Ding and Ben Bikson, *PoroGen*

July 24, 2014

Outline

- Introduction to team members
- Technology overview
- US DOE bench-scale program (\$3.8 MM)
- US DOE pilot-scale program (\$12.5 MM)

Introduction to GTI

- Research organization, providing energy and environmental solutions to the government and industry since 1941
- Facilities: 18 acre campus near Chicago

Introduction PoroGen

- Materials technology company commercially manufacturing products from high performance plastic PEEK (poly (ether ether ketone))
- Products ranging from membrane separation filters to heat transfer devices

PEEK Fiber + Cartridge + Module = Separation system

What is a membrane contactor?

- High surface area membrane device that facilitates mass transfer
- Gas on one side, liquid on other side

- Membrane does not wet out in contact with liquid
- Separation mechanism: CO₂ permeates through membrane and reacts with the solvent; N₂ does not react and has low solubility in solvent

Process description

Polymer	Max service temperature (°C)
Teflon™	250
PVDF	150
Polysulfone	160
PEEK	271

 The PEEK hollow fibers exhibit exceptional solvent resistance: exposure of fibers to MEA solution (30%) for 1,500 hours at 120 °C had no adverse effect on the mechanical properties or gas transport

Membrane contactor advantages as compared with conventional absorbers

Gas-liquid contactor		Volumetric mass transfer coefficient, (sec) ⁻¹
Packed column (Countercurrent)	0.1 – 3.5	0.0004 - 0.07
Bubble column (Agitated)	1 – 20	0.003 - 0.04
Spray column	0.1 – 4	0.0007 - 0.075
Membrane contactor	1 – 70	0.3 - 4.0

Membrane Contactor

^{*} Olav Falk-Pedersen, Developments of gas/liquid contactors, GRI contract 8325, December, 2002.

Membrane contactor for flue gas CO₂ capture compared to conventional membrane process

Membrane technology	Need to create driving force?	CO ₂ /N ₂ selectivity (α)	Can achieve >90% CO ₂ removal and high CO ₂ purity in one stage?
Conventional membrane process	Yes. Feed compression or permeate vacuum required	Determined by the dense "skin layer", typically $\alpha = 50$	No. Limited by pressure ratio, multi-step process required*
Membrane contactor	No. Liquid side partial pressure of CO ₂ close to zero	Determined by the solvent, $\alpha > 1000$	Yes

Bench-scale development (Oct. 1, 2010 – Dec. 31, 2013): objective and scope

Super-hydrophobic membranes surface

PEEK composite membrane

Thin layer (0.1 μ m) of smaller surface pores

Asymmetric porous structure

 Super-hydrophobic surface not wetted by alcohol

Alcohol droplet

Recent modules achieved 2,000 GPU membrane intrinsic CO₂ permeance

Beginning of the project No

PEEK membrane: from fibers to commercial

modules

Hollow fibers OD: 18 mil ID: 10 mil

Commercial

8" diameter 60" long

Module scale-up from bench to commercial

- 2" bench 0.5 m² (lab)
- 2" bench 3 m² (lab)
- 4" field 15 m² (field)
- 8" commercial 60 m² (pilot-scale)

Module in housing

Membrane absorber study in the lab: >140 tests

- Gas feed (bore side): simulated flue gas compositions at temperature and pressure conditions after FGD
- Solvents (shell side): aMDEA (40 wt%) and activated K₂CO₃ (20 wt%)
- BP1 technical goal achieved

Parameters	Goal	aMDEA	K ₂ CO ₃
CO ₂ removal in one stage	≥ 90%	90%	94%
Gas side ΔP , psi	≤ 2	1.6	1.3
Mass transfer coefficient,(sec) ⁻¹	≥ 1	1.7	1.8

Module for lab testing (\emptyset 2" x 15" long, 1m²)

Performance not affected by O₂, SOx, NOx contaminants in feed

Membrane desorber study in the lab: four regeneration modes, > 80 tests

<u>Mode I</u>

- Shakedown
- Hydrophobic
- Shell liquid feed
- N₂ sweep

Mode II

- Hydrophobic
- Shell liquid feed
- Steam sweep in bore side

Mode III

- Hydrophilic
- Bore liquid feed
- No sweep in shell side

Mode IV

- Hydrophobic
- Shell liquid feed
- No sweep in bore side

Down selected for Field tests!

Integrated absorber/desorber for field testing

The field site is Midwest Generation, 35 miles from GTI

Process flow diagram

Flue gas composition

Element	Concentration
CO ₂	7.4-9.6 vol%
NO _x	40-60 ppmv
SO ₂	0.4-0.6 ppmv
CO	100-600 ppmv
O ₂	8.5-11 vol%

Balance: N₂, water vapor and trace elements

Relative humidity: 39% at 130°F

Field test results with aMDEA and H3-1 solvents

Membrane contactor field performance: mass transfer coefficient for absorption 1.2 (sec)⁻¹

aMDEA solvent

Total gas flow rate, L(STP)/min	CO ₂ removal, %	Volumetric mass transfer coefficient, (sec) ⁻¹
245	93.2	1.2

Mass transfer coefficient for conventional contactors: 0.0004-0.075 (sec)-1

Pilot Test of PEEK Membrane Contactor Process for Post-combustion CO₂ Capture

DOE Contract No. DE-FE0012829

- **Performance period**: Oct. 1, 2013 Sep. 30, 2017
- Total funding: \$12,544,638
- Objectives:
 - Build a 1 MW_e equivalent pilot-scale CO₂ capture system (20 ton/day) and conduct tests on flue gas at the NCCC
 - Demonstrate a continuous, steady-state operation for a minimum of two months
- Goal: Achieve DOE's Carbon Capture performance goal of 90% CO₂ capture rate with 95% CO₂ purity at a cost of \$40/tonne of CO₂ captured by 2025

Team member

Member	Specific Project Roles
gti	 Project management and planning System design and construction Site preparation and system installation Pilot test at the NCCC
Porogen INNOVATIVE MEMBRANE PRODUCTS	Membrane and module developmentSupporting system design and construction
MITSUBISHI HITACHI POWER SYSTEMS	Advanced solvent (H3-1) development
TRIMERIC CORPORATION	Techno-Economic Analyses
NCCC NCCC	Site host

NCCC= National Carbon Capture Center (Southern Company, Wilsonville, AL)

Conceptual diagram for a 24 module skid for 8-inch diameter modules

Summary

- Promising technology based on field tests
 - ≥ 90% CO₂ removal in one stage
 - Mass transfer coefficient of 1.2 (sec)⁻¹, which is over one order of magnitude greater than conventional contactors
- Test of advanced solvents planned
- Pilot-scale research program is ongoing

Acknowledgements

Financial support

- DOE NETL José Figueroa
- ICCI Dr. Debalina Dasgupta

