

Application of a Heat Integrated Post-combustion CO₂ Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant Award Number DE-FE0007395

Kunlei Liu, Heather Nikolic, and Jesse Thompson

University of Kentucky, Center for Applied Energy Research

http://www.caer.uky.edu/powergen/home.shtml

Project Overview

- 2 MWth (0.7 MWe) advanced post-combustion CO₂ capture pilot plant
- Capture and release program
- Designed as a modular process
- Testing at LG&E and KU EW Brown Generating Station, Harrodsburg, KY
- Includes several UKy-CAER developed technologies
- Testing of two solvents (MEA and H3-1)

Project Organization

Project Participants

Project Performance Dates

BP1: October 1, 2011 to January 31, 2013 [16 months]

BP2: February 1, 2013 to August 31, 2013 [7 months]

BP3: September 1, 2013 to December 31, 2014 [16 months]

BP4: January 1, 2015 to July 31, 2016 [18 months]

Project Funding

Project Goal and Objectives

Goal

 Develop a pathway to achieve the US DOE NETL post-combustion CCS target of 90% CO₂ capture with a cost increase (LCOE) of less than 35% (\$40/tonne CO₂ captured)

Objectives

- To demonstrate a heat-integrated post-combustion CO₂ capture system with an advanced solvent
- To collect corrosion data leading to selection of appropriate materials of construction for a 550 MWe commercial-scale carbon capture plant
- To gather data on solvent degradation, water management, system dynamic control and other information during the long-term verification campaigns
- To provide data and design information for larger-scale pilot plant followed by a commercial-scale project

Fundamental Science

Two Principles

- 1. Non-linear chemical absorption/desorption relationship between carbon loading and CO₂ partial pressure
- Non-linear relationship between relative humidity for wet air and the wet-bulb temperature

VLE Data Collected at UKy-CAER.

Humidity Chart. Air-water at 1 atm.

McCabe, Warren L., Smith, Julian C., and Harriot, Peter. <u>Unit Operations of Chemical Engineering</u>. Fifth Edition. Mc-Graw-Hill, Inc. 1993.

Technology Background

Conditions at top of primary stripper T \sim 200 °F P \sim 20 psia

Conditions at top of secondary air stripper

T ~ 180 °F

P ~ 15 psia

Conditions at top of absorber T ~ 100 °F P ~ 15 psia

Previous Technology Development

H3-1 has a lower regeneration energy, a higher CO₂ absorption capacity, and a lower degradation rate than 30wt% MEA. Experimental data for H3-1 was collected at UKy-CAER labs to fill in data gaps and complete an Aspen kinetic model.

Solvent emissions and degradation studies have been conducted at UKy-CAER. Solvent degradation product detection methods have been developed and are in practice.

Previous Technology Development

Lab-scale corrosion studies have been performed to establish the corrosion resistant potential of the UKy-CAER developed coatings.

Ni₂Al₃ Coating

Technical and Economic Advantages

Technical and Economic Challenges

- Liquid desiccant loop applicability to large-scale power plant
- Low bench-scale solvent degradation combined with air stripper exposure to be verified at pilot-scale during long-term testing
- Possible new byproduct is identified with an environmental, health, or safety risk
 - Periodic gas sampling and analysis will be conducted by UKy-CAER and EPRI, separately. If necessary, process modifications will be implemented or an alternate solvent will be considered
- Possibility of larger solvent losses due to a process upsets during test campaign
 - A root-cause analysis will be conducted to determine if process modifications are necessary

Experimental Design and Work Plan

30 wt% MEA Campaign

Parametric Campaign

Transient, Load-following

Campaign

2000-hour Long Term Continuous Campaign

Evaluation Parameters

Energy Requirements
Solvent and Water Loss
CO₂ Absorption Capacity
Solvent Degradation
Gaseous Emissions
Material Corrosion

H3-1 Campaign

Parametric Campaign

Transient, Loadfollowing Campaign

> 2500-hour Long Term Continuous Campaign

Project Schedule

Task Name	Start	Finish	11 2012 2013 2014 2015 2016 201 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1
1 Project Planning and Management	10/3/11	1/31/13	
2 Detailed Update of Techno-Economic Analysis	6/8/12	12/31/12	Planning
3 Initial EH&S Assessment	3/1/12	11/27/12	
4 Basic Process Specification and Design	5/1/12	12/3/12	<u> </u>
5 Project Planning and Management	2/1/13	8/31/13	
6 Slipstream Site Survey	2/1/13	4/8/13	
7 Finalized Engineering Specification and Design	2/1/13	5/16/13	9
8 Test Condition Selection and Test Plan	2/1/13	6/4/13	Design
9 System Engineering Update and Model Refinements	3/1/13	4/1/14	
10 Project Planning and Management	9/3/13	12/31/14	<u> </u>
11 Update of EH&S Assessment	9/3/13	7/31/14	A
12 Site Preparation	9/1/13	7/1/14	
13 Fabrication of Slip-stream Modules	11/4/13	8/18/14	Fabrication
14 Procurement and Installation of Control Room/Field Lab Section	9/3/13	9/30/14	A
15 Fabrication of Corrosion Coupons	10/1/13	12/31/14	<u> </u>
16 Slipstream Facility Erection, Start-up, Commissioning and Shakedown	7/31/14	12/31/14	9
17 Project Planning and Management	1/1/15	7/31/16	Tooling
18 Slip-stream Test Campaign	2/12/15	4/26/16	Testing —
19 Final Update of Techno-Economic Analysis	6/22/15	6/28/16	<u> </u>
20 Final EH&S Assessment	7/30/15	6/28/16	^ ^

Project Key Milestones

ВР	Title	Completion Date
1	Preliminary Technical and Economic Analysis that details the viable technical merit of UKy-CAER CCS process for slipstream scale study	
1	Initial EH&S report that details environmental implication of slipstream operation and proposed mitigation for anticipated environmental safety obstacles to operation, if any	11/27/12
2	2 Finalize P&ID for slipstream modular unit fabrication	
2	UKy-CAER Finalize Test Plan for slipstream campaigns with completed P&ID specifications	5/15/2013
3	Pouring of foundations for platform for slipstream modular units setup which meets engineering design load/specifications	8/1/14
3	KMPS fabricates slipstream modular units and delivers to EW Brown Generating Station for installation	
3	Control Room/ Field Lab Trailer Assembled and Setup	8/30/14
3	Tie Ins in place for slipstream modular units and control room/ field lab trailer	4/30/14
3	Slipstream pilot unit commissioning	12/31/14
4	MEA long term test campaign, 2000 hours of load-following run with 30 wt% MEA	8/21/15
4	H3-1 long term test campaign, 2500 hours of load-following run	4/26/16
4	Final Technical Economic Analysis and Final EH&S Assessment	6/28/16
4	Project Final Scientific Report	9/30/16

Project Key Success Criteria

ВР	Success Criteria		
1	A complete specification list for the proposed 2 MWth pilot slip-stream facility detailing major equipment sizing with mass and energy balances that will serve as a blueprint for the engineering design. The specification list will show that the proposed design is within the approved budget.		
2	A finalized detailed engineering process design package meeting the specifications from Task 4. The final package will include a ± 10% accuracy price estimate of the system that is within the project budget stipulated in the agreement.		
2	A completed preliminary test matrix plan for the slip-stream test campaign to achieve the program objectives and success criteria of the 2MWth (0.7 MWe) pilot slip-stream modular facility.		
3	Inspection of the pilot plant site that has been appropriately graded for temporary parking, driveways, and the platform foundation sufficient for pilot plant erection by subcontractors.	100%	
3	Documented delivery of the slip-stream modules and control room/field lab onto the plant site according to the design and construction specifications.	0%	
4	A heat-integrated post-combustion CO ₂ capture system with (a) 15-25% less energy consumption compared to the DOE reference case using 30 wt% MEA; (b) partial CO ₂ recycling to enhance gaseous CO ₂ pressure at the absorber inlet; (c) much cooler recirculating cooling water compared to a conventional cooling tower at the same ambient conditions; and (d) an advanced solvent that has less degradation and corrosivity than a 30 wt% MEA.		
4	The completed final technical and economic analysis of the proposed process concept for a 550 MW power plant that shows a pathway to achieving carbon capture up to 90% with a LCOE increase less than 35% according to the DOE guidelines.		
4	Final technical report issued including analysis of ${\rm CO_2}$ capture, energy consumption, solvent make-up, coupon corrosion, water balance, solvent degradation, and gaseous emissions.	0%	

Project Key Risks and Mitigation Strategies

ВР	Description	Probability	Impact	Mitigation and Response Strategies
3	The performance of the heat-integrated air stripper during commissioning does not meet the success criteria due to heat source constraints in the pilot-plant.	Low	Moderate	An additional heat source for the slipstream facility has been identified and included in the module design.
3	The performance of the heat integrated cooling system during commissioning does not meet the success criteria due to heat source constraints in the pilot-plant	Low	Moderate	An additional heat source has been identified and incorporated into the design, in the event that it is needed.

Project Test Equipment

BP3 Project Task 12 – Site Preparation

BP3 Project Task 13 – Fabrication of Modules

Module

Fabrication and Assembly

3D Model Review

Module Assembly Shop
Progress Check
and Dimension Verification Visit

BP3 Project Task 14 – Control Room/Field Lab

- Trailer Delivery expected in September 2014
- Alkalinity/CO₂ Loading/Density robot is currently being evaluated at UKy-CAER.

BP3 Project Task 15 – Corrosion Coupons

In-pipe Corrosion Coupon Racks

Column Corrosion Coupon Racks

Corrosion Coupons

Potential Future Research

Advanced technologies can be more closely studied

- Intercooler protocol development (cooling temperature and location variation)
- Application of sorbent to improve solvent stability or control heavy metals accumulation
- Solvent and water management for other second and third-generation system
- Solvent/mist mitigation options at the scrubber outlet
- Control logic to accommodate solvent specific dynamic behavior

Open, modular design

 Allows for ease of advanced process modification (such as addition of membranes or flash stripping, column design changes, etc.)

Future Plans

100-500 MWe

Full-scale Unit

Technology Development Pathway

0.02 MWe (0.1 MWth) Pilot-scale Unit

(2 MWth)
Pilot-scale Unit

10-25 MWe Demonstration Unit (LG&E KU and DEDI)

Shengli OFC 0.7 M ton/yr Unit MoU Signed July 8, 2014

Acknowledgements

José Figueroa, DOE NETL **CMRG Members** John Moffett, LG&E and KU Donnie Duncan, LG&E and KU Joe Beverly, LG&E and KU David Link, LG&E and KU Michael Manahan, LG&E and KU Brad Pabian, LG&E and KU Jeff Fraley, LG&E and KU Eileen Saunders, LG&E and KU