CO₂ CAPTURE FROM IGCC GAS STREAMS USING THE AC-ABC PROCESS

2010 NETL CO₂ Capture Technology Meeting September 16, 2010 Pittsburgh, PA.

Project Overview

- Partners:
 - SRI International, Menlo Park, CA
 - Great Point Energy, Cambridge, MA
 - DOE-National Energy Technology Center
- Period of Performance:
 - 10-1-2009 through 1-30-2012
- Funding:
 - U.S.: Department of Energy: \$3.4 million
 - Cost share: \$1.1 million
 - Total: \$4.5 million

Project Objectives

Overall objective:

■ To develop an innovative, low-cost CO₂ capture technology based on absorption on a high-capacity and low-cost aqueous ammoniated solution.

Specific objectives:

- Test the technology on a bench scale batch reactor to validate the concept,
- To determine the optimum operating conditions for a small pilot-scale reactor,
- Design and build a small pilot-scale reactor capable of continuous integrated operation,
- Perform tests to evaluate the process in a coal gasifier environment,
- Perform a technical and economic evaluation on the technology.

Process Block Diagram

Process Highlights

- Concentrated ammoniated solution is used to capture CO₂ and H₂S from syngas at high pressure.
- Operates at or above ambient temperature; No refrigeration is needed.
- CO₂ is released at a high pressure:
 - The size of CO₂ stripper (regenerator) and the electric power consumption for compression of CO₂ to the pipeline pressure is reduced.
- High net CO₂ loading, up to 20% by weight.
- H₂S is released at conditions suitable for sulfur recovery.

Process Advantages

- Low cost and readily available reagent.
- Very little solvent makeup is required
 - Reagent is chemically stable under the operating conditions.
- Low heat consumption for CO₂ stripping (<600 Btu/lb CO₂).
- Extremely low solubility of H₂, CO and CH₄ in absorber solution
 - Minimizes losses of fuel species.
- Absorber and regenerator can operate at similar pressure.
 - No need to pump solution cross pressure boundaries. Low energy consumption for pumping.

Chemical Reactions (Aqueous Phase)

- **■NH40H+CO2** ←→ NH4HCO3
- **■(NH4)2CO3+CO2 + H2O ←→2NH4HCO3**
- ■NH4(NH2CO2)+CO2 +2H2O ←→2NH4HCO3
- ■NH4HCO3 ←→ NH4HCO3 (precipitate)
- •All the reactions are reversible and they go from left to right in the absorber (lower temperature) and from right to left in the stripper regenerator (higher temperature).
- ■Heat of reaction is in the 300-600 btu/lb of CO₂ range and it depends on temperature and the CO₂/NH₃ ratio of the solution.
- 2NH4OH + H2S ←===→ 2NH4HS + H2O
- (NH4)2CO3 + H2S ←===→ NH4HS + NH4HCO3
- NH4HCO3 + H2S ←===→ NH4HS + H2O + CO2
- No precipitation of Sulfide salts.

Technical Challenges

Precipitation of solids

- Benefit: Increases the CO₂ loading of solution flowing to the regenerator.
- Risk: Potential fouling of packing and heat exchanger surfaces.

Solutions:

- Operate at elevated temperatures under nonprecipitation conditions.
- Use open, smooth structural packing.
- Use slurry pumps to transfer from absorber to regenerator

Technical Challenges (continued)

- Excessive residual ammonia in the fuel gas stream leaving the absorber
 - Source of Risk:
 - Absorber operation at an elevated temperatures
 - Solutions:
 - Install a small absorber (wash) column to capture the residual ammonia
 - The wash water will be reclaimed in a stripper and the ammonia is cycled back to the absorber.
 - Tests at SRI has shown that ammonia levels can be reduced to ppm levels.

Project Tasks

1. Bench-scale Batch Tests

2. Pilot-Scale Integrated, Continuous Tests

3. Project Management

Bench-Scale Absorber Testing

- Determination of solubility:
 - Shifted-gas components (H₂, CO, N₂, Ar)
- Determination of reactivity of CO₂ and H₂S:
 - Function of composition, pressure, and temperature.
- Mixed-gas testing to determine the relative reaction kinetics.

Schematic Diagram of the Absorber System

Photograph of the Absorber System

Reactor ID: 4-in
Low pressure drop
Koch structural packing:

Specific area: 425 m²/m³

Packing height: 2-ft

Solubility of Non-Reacting Gases in the Solution

Gas	Gas Component Concentration (%v/v)	Dissolved Gas (g/kg Solution) at 40 atm Total Pressure
H2	50.0	6.53E-03
CO	2.0	3.62E-04
CH4	2.0	4.67E-04
N2	1.0	1.11E-04

CO₂ Capture Efficiency vs Solution Composition

Effect of Temperature on Absorption Rate

Temperature Raise on Absorption

Tendency Toward Equilibrium Absorption

H₂S and CO₂ Absorption Efficiencies

CO₂ Capacity: Function of Solution Composition

Solubility of NH₄HCO₃ at 50°C: 70 wt%

Bench-Scale Regenerator Testing

- Determination of CO₂ release characteristics
 - Function of temperature, pressure and solution composition
- Determination of H₂S release characteristics
 - Function of temperature, pressure and solution composition
- Relative kinetics of CO₂ and H₂S release

CO₂ Attainable Pressure Function of Temperature

Photograph of the Regenerator System

High Pressure Regeneration of CO₂

Release of H₂S During Regeneration

Technical and Economic Analysis

- Aspen and GT-Pro modeling were used to generate the equipment sizing and heat and material flows.
- Use DOE spread sheet to generate cost
- Base case will be an IGCC plant (750 MW nominal) with no CO₂ capture.
- Compare the AC-ABC process with a similar-size plant using CO₂ capture with Selexol subsystem.

Block Flow Diagram

Block Flow Diagram of the CO₂ and H₂S Capture System

		Base Case: No CO ₂ Capture	Base Case: Selexol CO ₂ Capture	AC-ABC: 600 BTU/lb	AC-ABC: H2S Removal as Gypsum
	Units				
Power Production @ 100% Capacity	GWh/yr	5,445	4,461	4,888	4,888
Power Plant Capital	c/kWh	4.48	6.21	5.44	5.38
Power Plant Fuel	c/kWh	1.90	2.46	2.22	2.22
Variable Plant O&M	c/kWh	0.78	1.00	0.93	0.93
Fixed Plant O&M	c/kWh	0.60	0.79	0.72	0.72
Cost of Electricity (COE)*	c/kWh	7.76	10.46	9.31	9.25
Cost of Electricity (COE)	c/kWh	7.76	10.88	9.69	9.62
Increase in COE*	%	0.0%	34.8%	20.0%	19.2%
Increase in COE	%	0.0%	40.2%	24.9%	24.0%
Net Efficiency (HHV)	%	39.2%	30.3%	33.2%	33.2%

^{*} Exludes transportation, storage, and monitoring costs

CO2 capture: 3.3 million tons/year; Plant operting life: 30 years; Capacity factor: 80%; Capital charge factor: 17.5%

Accomplishments

- Operation of bench-scale system:
 - High pressure (20 bar) and
 - Elevated temperatures (up to 160 C).
- Demonstration of very high levels (>90%) of CO₂ and H₂S capture efficiency.
- Regeneration of solution and release of CO₂ and H₂S at high pressures.
- Preliminary analysis shows a significant cost improvement over the Selexol case.

Future Plans: Pilot-Scale Continuous Integrated Tests

- Design of a pilot-scale continuous, integrated test system
- Construction of the pilot-scale system
- Development of pilot-scale test plans
- Performance of pilot-scale tests
- Process modeling
- Economic analysis
- Technology transfer to commercial sector

Pilot-Scale Testing with a Gasifier Stream

- Use the gas stream from the Great Point Energy's 1 ton/day gasifier
 - The stability of integrated operation will be evident in the field test more readily because not all variables are closely controlled as in the simulated tests.
 - Long test duration: The field tests will provide about 10 times longer total test time than with the simulated tests (up to 600 h total).
 - Effect of trace contaminants: The field test will use a gas stream from an operating gasifier that has undergone minimum cleanup and the gas stream will contain trace contaminants.

Team

- SRI International
 - Dr. Gopala Krishnan Associate Director (MRL) and PI
 - Dr. Angel Sanjurjo Materials Research Laboratory Director and Project Supervisor
 - Dr. Indira Jayaweera, Dr. Jordi Perez, and Mr. Anoop Nagar
- Great Point Energy, Inc,
 - Dr. Pat Raman
- DOE-NETL
 - Ms. Susan Maley, Ms. Jenny Tennant