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Project Overview

 Partners:

 SRI International, Menlo Park, CA

 Great Point Energy, Cambridge, MA

 DOE-National Energy Technology Center

 Period of Performance:

 10-1-2009 through 1-30-2012

 Funding:

 U.S.: Department of Energy: $3.4 million

 Cost share: $1.1 million

 Total: $4.5 million
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Project Objectives

 Overall objective:
 To develop an innovative, low-cost CO2 capture 

technology based on absorption on a high-capacity 
and low-cost aqueous ammoniated solution. 

 Specific objectives:
 Test the technology on a bench scale batch reactor 

to validate the concept,
 To determine the optimum operating conditions for 

a small pilot-scale reactor, 
 Design and build a small pilot-scale reactor capable 

of continuous integrated operation, 
 Perform tests to evaluate the process in a coal 

gasifier environment,
 Perform a technical and economic evaluation on 

the technology. 
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Process Block Diagram
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Process Highlights

 Concentrated ammoniated solution is used to 
capture CO2 and H2S from syngas at high 
pressure.

 Operates at or above ambient temperature; No 
refrigeration is needed.

 CO2 is released at a high pressure:
 The size of CO2 stripper (regenerator) and the 

electric power consumption for compression of CO2

to the pipeline pressure is reduced.

 High net CO2 loading, up to 20% by weight.

 H2S is released at conditions suitable for sulfur 
recovery.
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Process Advantages

 Low cost and readily available reagent.

 Very little solvent makeup is required 
 Reagent is chemically stable under the operating 

conditions.

 Low heat consumption for CO2 stripping  
(<600 Btu/lb CO2).

 Extremely low solubility of H2, CO and CH4 in 
absorber solution 
 Minimizes losses of fuel species.

 Absorber and regenerator can operate at 
similar pressure. 
 No need to pump solution cross pressure 

boundaries. Low energy consumption for pumping. 
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Chemical Reactions (Aqueous Phase)

NH4OH+CO2  NH4HCO3

(NH4)2CO3+CO2 + H2O 2NH4HCO3

NH4(NH2CO2)+CO2 +2H2O 2NH4HCO3

NH4HCO3  NH4HCO3 (precipitate)

All the reactions are reversible and they go from  left to 
right in the absorber (lower temperature) and from right 
to left in the stripper regenerator (higher temperature).

Heat of reaction is in the 300-600 btu/lb of CO2 range 
and it depends on temperature and the CO2/NH3 ratio of 
the solution.

 2NH4OH + H2S === 2NH4HS + H2O

 (NH4)2CO3 + H2S === NH4HS + NH4HCO3

 NH4HCO3 + H2S === NH4HS + H2O + CO2

 No precipitation of Sulfide salts.
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Technical Challenges

 Precipitation of solids

 Benefit: Increases the CO2 loading of solution 
flowing to the regenerator.  

 Risk: Potential fouling of packing and heat 
exchanger surfaces.

 Solutions:

 Operate at elevated temperatures under non-
precipitation conditions.

 Use open, smooth structural packing.

 Use slurry pumps to transfer from absorber to 
regenerator
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Technical Challenges (continued)

 Excessive residual ammonia in the fuel gas 
stream leaving the absorber

 Source of Risk:

 Absorber operation at an elevated temperatures

 Solutions:

 Install a small absorber (wash) column to 
capture the residual ammonia

 The wash water will be reclaimed in a stripper 
and the ammonia is cycled back to the absorber.

 Tests at SRI has shown that ammonia levels can 
be reduced to ppm levels.
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Project Tasks

1. Bench-scale Batch Tests

2. Pilot-Scale Integrated, Continuous Tests

3. Project Management
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Bench-Scale Absorber Testing

 Determination of solubility:

 Shifted-gas components (H2, CO, N2, Ar)

 Determination of reactivity of CO2 and 
H2S: 

 Function of composition, pressure, and 
temperature.

 Mixed-gas testing to determine the 
relative reaction kinetics.



Schematic Diagram of the Absorber System
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Photograph of the Absorber System

Reactor ID:  4-in
Low pressure drop 
Koch structural packing: 

Specific area: 425 m2/m3

Packing height: 2-ft



Solubility of Non-Reacting Gases in the Solution

Gas

H2 50.0 6.53E-03

CO 2.0 3.62E-04

CH4 2.0 4.67E-04
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CO2 Capture Efficiency vs Solution Composition 

 

0

10

20

30

40

50

60

70

80

90

100

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

C
a

p
tu

re
 E

ff
ic

ie
n

c
y

 (
%

)

R' (Molar Ratio, CO2/NH3) 

Run 17 (4 M, 50 C)

Run 16 (4 M, 33 C)

Run 18 (4 M, 45 C)

Run 19 (4 M, 60 C)

Run 20 (4 M, 43 C)

Run 21 (8 M, 55 C)

Inlet CO2 Partial Pressure 450 kPa

8 M, 55 C

4 M, 60 C

4 M, 43 C

Reactor Volume = 0.0045 m3

Reactor Pressue = 265 psia
Absorber Pressure: 265 psia
% CO2=25



Effect of Temperature on Absorption Rate
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Temperature Raise on Absorption
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Tendency Toward Equilibrium Absorption
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H2S and CO2 Absorption Efficiencies
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CO2 Capacity: Function of Solution Composition

CO2 loading in ammoniated solutions
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Bench-Scale Regenerator Testing

 Determination of CO2 release characteristics

 Function of temperature, pressure and 
solution composition

 Determination of H2S release characteristics

 Function of temperature, pressure and 
solution composition

 Relative kinetics of CO2 and H2S release
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CO2 Attainable Pressure
Function of Temperature
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Photograph of the Regenerator System
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Release of H2S During Regeneration
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Technical and Economic Analysis

 Aspen and GT-Pro modeling were used to 
generate the equipment sizing and heat 
and material flows.  

 Use DOE spread sheet to generate cost 

 Base case will be an IGCC plant (750 MW 
nominal) with no CO2 capture.  

 Compare the AC-ABC process with a 
similar-size plant using CO2 capture with 
Selexol subsystem. 



Block Flow Diagram
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Block Flow Diagram of the CO2 and H2S Capture 
System
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Preliminary Cost Comparison

Base Case: 

No CO2 

Capture

Base Case: 

Selexol CO2 

Capture 

AC-ABC: 600 

BTU/lb

AC-ABC: 

H2S 

Removal as 

Gypsum
Units

Power Production @ 100% Capacity GWh/yr 5,445 4,461 4,888 4,888

Power Plant Capital c/kWh 4.48 6.21 5.44 5.38

Power Plant Fuel c/kWh 1.90 2.46 2.22 2.22

Variable Plant O&M c/kWh 0.78 1.00 0.93 0.93

Fixed Plant O&M c/kWh 0.60 0.79 0.72 0.72

Cost of Electricity (COE)* c/kWh 7.76 10.46 9.31 9.25

Cost of Electricity (COE)
c/kWh 7.76 10.88 9.69 9.62

Increase in COE*
% 0.0% 34.8% 20.0% 19.2%

Increase in COE
% 0.0% 40.2% 24.9% 24.0%

Net Efficiency (HHV) % 39.2% 30.3% 33.2% 33.2%

* Exludes transportation, storage, and monitoring costs

CO2 capture: 3.3 million tons/year; Plant operting life: 30 years; Capacity factor: 80%; Capital charge factor: 17.5%



Accomplishments

 Operation of bench-scale system:

 High pressure (20 bar) and 

 Elevated temperatures (up to 160 C).

 Demonstration of very high levels 
(>90%) of CO2 and H2S capture 
efficiency.

 Regeneration of solution and release of 
CO2 and H2S at high pressures.

 Preliminary analysis shows a significant 
cost improvement over the Selexol case.
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Future Plans: Pilot-Scale Continuous Integrated Tests

 Design of a pilot-scale continuous, 
integrated test system 

 Construction of the pilot-scale system 

 Development of pilot-scale test plans 

 Performance of pilot-scale tests 

 Process modeling 

 Economic analysis

 Technology transfer to commercial sector
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Pilot-Scale Testing with a Gasifier Stream

 Use the gas stream from the Great Point 
Energy’s 1 ton/day gasifier

 The stability of integrated operation will be evident 
in the field test more readily because not all 
variables are closely controlled as in the simulated 
tests.

 Long test duration:  The field tests will provide 
about 10 times longer total test time than with the 
simulated tests (up to 600 h total).

 Effect of trace contaminants:  The field test will use 
a gas stream from an operating gasifier that has 
undergone minimum cleanup and the gas stream 
will contain trace contaminants.
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