

EVALUATION OF CATHODE MATERIALS FOR SOFC PERFORMANCE RELIABILITY

BRIAN J INGRAM LE (GAVIN) GE ALBERT L. LIPSON J. DAVID CARTER VICTOR A. MARONI

17th Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting July 19-21, 2016

CONCLUSIONS/OUTLINE

- An electrochemical test protocol was established and used
 - Short term performance
 - Thermal dependance
- A baseline button cell performance was established allowing for direct statistical comparison from sample to sample
- Variability in feed stock materials is analyzed and shown to affect reliability of electrochemical performance
 - Morphology and chemical/phase composition

OVERVIEW OF EFFORTS: THREE PRONGED APPROACH

- Identify key factors and tolerances in feedstock powders mapping to cell electrochemical reliability
- 2. Develop rapid and simple diagnostic approach to predict the performance characteristics of feed stock powders as they are received
- Develop a diagnostic half-cell and full-cell testing protocol and establish a baseline performance for statistical comparison

FUNDAMENTAL STUDIES

RAPID DIAGNOSTIC ANALYSES

Effort will focus on short term electrochemical performance reliability

SOFC RESEARCH AT ARGONNE

Closely aligned with the Electrochemical Energy Storage Department

EIGHT DISTINCT LSCF FEED STOCK POWDERS

Various synthetic approaches, materials providers, and lots

Sample#	Nominal Composition	<u>Comment</u>
LSCF-01	(La _{0.6} Sr _{0.4}) _{0.95} Co _{0.2} Fe _{0.8} O _{3-δ}	Standard
LSCF-02		(nominally
LSCF-03		identical)
LSCF-04		high surface area
LSCF-05		high surface area
LSCF-06		precursor
LSCF-07		Standard
LSCF-08		Standard

BASELINE AND ELECTROCHEMICAL PROTOCOL

<u>Current Status</u>:

- Reliability tolerances are strict (< 1% performance variability threshold)
- Typical evaluation requires complex full cell fabrication and testing (direct performance comparison, but inefficient for materials verification)
- Long term degradation is a significant concern

Path Forward:

- Single phase porous electrodes (allows for efficient electrochemical testing)
- Measurement reliability must be maximized (understand limitations and baseline statistics in bench-scale analysis)
- Focus on short-term electrochemical performance and eventually map to long-term degradation in partnership with SOFC community

BASELINE AND ELECTROCHEMICAL PROTOCOL: HALF CELL DESIGN

Reduced variation and complexity based on single gas environment

Argonne

TESTING PROTOCOL

Focus on short term electrochemical performance

Thermal OCV hold for equilibration followed by dc and ac-is measurements

BASELINE PERFORMANCE: LSCF-02

Statistical analysis based on repetitions provides baseline performance

- Representative values derived from impedance measurements
- Sensitivity to electrode thickness and alignment can be resolved
- Typically < 2-3% variation observed in polarization conductance
- Very small variation in thermal activation energy

ANALYSIS OF LSCF SPECIMENS

SIGNIFICANT VARIATION FROM BASELINE

FEEDSTOCK POWDER CHARACTERIZATION: MORPHOLOGY

<u>Current Status</u>:

- SOFC materials vendors taking various routes for cathode powder synthesis (e.g., solid state vs wet chemical)
- Cathode powders have fairly wide distributions of particle sizes (ranging from 10 nm to 10 µm)
- No precise control of particle size as compared to Lithium battery materials (technology gap to fill in)

Path Forward:

- Choosing appropriate technique is critical for measuring particles size (laser diffraction vs dynamic light scattering)
- Understand morphology evolution with sintering. Final morphology of electrode (focused ion beam SEM, ultrasmall angle x-ray scattering)
- Correlating cell electrochemical performance with PSA (better particle size control may be needed)

Light scattering probes agglomerated particles

Light scattering probes agglomerated particles

Light scattering probes agglomerated particles

MORPHOLOGY: (ULTRA-)SMALL ANGLE X-RAY SCATTERING (U)SAXS

USAXS PROBES PRIMARY PARTICLE SIZES

- Comparison of 8 LSCF feed stock powders
- Electrodes annealed to 1000 °C on MgO substrate
- Significant variation are observed even after sintering in size of particles

USAXS PROBES PRIMARY PARTICLE SIZES

Monitoring in situ sintering

PRIMARY PARTICLE SIZE COMPARISON

Growth is evident and variation with synthetic approach

- Significant variations observed even in nominally identical powders
- Light scattering techniques are system and technique limited for small particles
 - Inconsistent results are obtained
 - Probes agglomerated particle sizes
- SEM does verify variations in particle morphology
- USAXS allows for an accurate analysis of "primary particles" and in situ annealing

FEEDSTOCK POWDER CHARACTERIZATION: CHEMISTRY

<u>Current Status</u>:

- Perovskite oxygen stoichiometry is highly varying (extremely difficult to measure and control oxygen content)
- Nominal phase pure stoichiometric compositions identical (5% A-site deficient 6428LSCF)
- Limited precision of phase analysis with bench top XRD (< 2-3% second phase detection)

Path Forward:

- Oxygen stoichiometry can be verified by neutron diffraction (non-routine approach)
- Verify phase purity by Raman as routine approach (high resolution XRD key to verification)
- Phase composition evolution is critical to cathode reliability

CHEMISTRY: OXYGEN STOICHIOMETRY BY NEUTRON DIFFRACTION

No statistical variation in oxygen stoichiometry is observed

CHEMISTRY: STRUCTURAL CHARACTERIZATION

HR-PXRD indicates strong tetragonal distortion in some powders

CHEMISTRY: PHASE PURITY BY HR-PXRD

HR-PXRD indicates evidence small second phase impurities

Second phase found

- (Co,Fe)₃O₄
- La₂O₃
- Sr₂CO₃

Relatively small amount of second phases are present

Requires high resolution powder x-ray diffraction from synchrotron source to quantify

CHEMISTRY: PHASE PURITY BY RAMAN SPECTROSCOPY

A low cost analysis tool verifying evidence of Co,Fe-O spinel

The broad signal 300-700 cm⁻¹ from metal-oxygen vibrations of nearly cubic ABO₃...Symmetry reduction caused by the AA'BB'O₃ character

- Small amount of (Co,Fe)₃O₄ observed due to symmetry change and high polarization scattering
- Heterogeneous distribution of (Co,Fe)₃O₄ second phase

Raman could be used as rapid diagnostic tool for second phase analysis

CHEMISTRY: RAMAN SPECTROSCOPY

CONCLUSION AND OVERVIEW CHARACTERIZATION REVIEW

Morphology variation is still unclear, especially postsintering. More studies are required... Observed variation in second phase formation

VS.

Argonne 🕰

THANK YOU...

- We would like to thank the U.S. Department of Energy, Office of Fossil Energy, Solid Oxide Fuel Cell Program
- Joseph Stoffa and Briggs White, project managers
- Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DEAC02-06CH11357.

