In-Operando Evaluation of SOFC Cathodes for Enhanced ORR Activity and Durability

Eric D. Wachsman
University of Maryland Energy Research Center
www.energy.umd.edu

Gil Cohn
US Department of Energy, National Energy Technology Laboratory, Contract No. FE0026190
10/01/2015-03/31/2017

Lourdes Salamanca-Riba, Christopher Pellegrinelli,
Yi-Lin Huang, Joshua Taillon
US Department of Energy, National Energy Technology Laboratory, Contract No. FE0009084
09/01/2012-08/31/2015

University of Maryland, College Park, USA
Background - Limitation of ORR from EIS

Many mechanisms are consistent with $k \sim P_{O_2}^{1/2}$

Oxygen exchange limited by vacancy exchange

\[r_{ads} = k_1 \left(\frac{f_{surf}}{I_{O_2}} \right)^{1/2} - \left(\frac{f_{surf}}{I_{O_2}} \right)^{1/2} \]

\[r_{exch} = k_1 \left(P_{O_2} \right)^{1/2} \]

Oxygen exchange limited by dissociative adsorption

\[r_{ads} = k_1 \left(\frac{P_{gas}}{f_{surf}} \right)^{1/2} - \left(\frac{f_{surf}}{I_{O_2}} \right)^{1/2} \]

\[r_{exch} = k_1 \left(P_{O_2} \right)^{1/2} \]

Same!

Need to combine multiple techniques to determine mechanism

Stuart Adler, University of Washington
Structure/Morphology
- Random crystallographic faces
- 3-phase-solid-gas interfaces

ORR Kinetics
- Surface controlled

Kinetic Parameters
- $k_{\text{ex}}, \, k_{\text{in}}, \, D_{\text{surf}}, \, D_{b/gb}$
- $k_{\text{ex}}, \, k_{\text{in}}, \, D_{b}, \, (D_{\text{surf}})$

Polarization
- Bias current
- OCP

In-Situ O_2 Exchange Analysis
- Limited
- Excellent

SIMS Depth Profile
- Random (bulk) to ordered (thin film) crystallographic faces
- 2-phase-solid-gas interface
- Bulk samples diffusion controlled
- Thin film samples surface controlled but strained
- $D_{b/gb} (k_{\text{in}})$
- $k_{\text{in}}, \, D_{b}, \, (D_{\text{surf}})$

Conductivity Relaxation
- OCP
- Small current perturbation
- Limited

Heterostructure
- Single crystal face
- 3-phase-solid-gas interface
- Surface controlled but strained and only for specific crystallographic orientation
- $k_{\text{in}}, \, D_{\text{surf}}, \, D_{b/gb}$
- OCP & bias current
- Limited

In-Operando
Background - Fundamental ORR Mechanisms

- **Temperature programmed desorption (TPD)**
 - Ramp temperature in He to determine adsorbed species

- **Temperature programmed oxidation (TPO)**
 - Ramp temperature in O$_2$ gas mixture to determine reaction rates

- **Isotope exchange (16O vs. 18O)**
 - Switch gas to separate solid vs gas species contribution to mechanism
Fundamental ORR Mechanisms - Catalysis

La$_{0.8}$Sr$_{0.2}$MnO$_3$±d

La$_{0.8}$Sr$_{0.2}$Co$_{0.6}$Fe$_{0.4}$O$_3$-d

Oxygen isotope exchange - TPD in 3000 ppm 18O$_2$

$O_2(g) + 2S \overset{k_1}{\leftrightarrow} 2O_{ads}$

Incorporation

$O_{ads} + V_o \overset{k_{-2}}{\leftrightarrow} O_o + S$

Dissociative Adsorption

Total Oxygen

Oxygen Concentration (ppm)

Temperature (°C)
ORR Reaction Mechanisms in Presence of H$_2$O and CO$_2$

In situ Isotope Exchange (IIE)

Contaminant: Mn, (Co, Fe), La, Sr

Tracer: 18O$_{lat}$

Contaminant
- C16O16O
- H$_2^{16}$O

Tracer
- 18O18O

ORR Products
- 16O16O
- 16O18O
- 18O18O

By Products
- H$_2^{18}$O
- H$_2^{16}$O
- C16O16O
- C16O18O
- C18O18O

Dissociation
- Provides information about dissociated 18O$_{(s)}$

Incorporation
- Provide information about surface reaction with contaminants

Chemical Reactions

1. $S + 1/2O_2$ $\xleftrightarrow{\kappa_0}$ O_{ads}

2. $O_{ads} + V_o$ $\xleftrightarrow{\kappa_2}$ $s + O_o^x$

Energy Research Center
ISTPX of LSCF in 25000ppm O₂ with 6000ppm D₂O

O₂ exchange with lattice \(^{18}\)O

![Graph showing O₂ exchange with lattice \(^{18}\)O]

D₂O exchange with lattice \(^{18}\)O

![Graph showing D₂O exchange with lattice \(^{18}\)O]

Mass of:

- \(^{18}\)O = 18
- H₂\(^{16}\)O = 18
- D₂\(^{16}\)O = 20
- D₂\(^{18}\)O = 22
ISTPX of LSCF in 25000ppm O$_2$ with 6000ppm D$_2$O

D$_2$O and O$_2$ exchange with lattice 18O

![Diagram showing exchange between D$_2$O and lattice 18O with various temperatures and concentrations.](image)

(Co, Fe) AND

Lattice 18O

La, Sr
ISTPX of LSCF in 25000ppm O₂ with 6000ppm D₂O

D₂O and O₂ exchange with lattice ¹⁸O

At lower temperature more of the lattice ¹⁸O exchanges with water than O₂

Accumulated Isotopic Fraction exchanged from ¹⁸O LSCF

(18O in O₂, 18O in D₂O, 18O in M36, 18O in M34, 16O16O, D₂16O, (Co, Fe), Lattice18O, La, Sr)
Temperature and PO$_2$ Dependence of LSCF in D$_2$O

Repeating exchange experiments as function of P$_{O_2}$, P$_{H_2O}$ and temperature

Accumulated Isotopic Fraction exchanged from 18O LSCF

- 18O in O$_2$
- 18O in D$_2$O
- 18O in M36
- 18O in M34

(Co, Fe) 16O16O

AND

Lattice18O

La, Sr D_2^{16}O

(Underlying lattice structure with atoms labeled)

Energy Research Center
Temperature and PO_2 Dependence of LSCF in D_2O

Exchange as function of PO_2, P_{H2O} and temperature

- Two Exchange Peaks:
 - As PO_2 increases, 300°C peak decreases
 - 450°C peak still present at high PO_2

- We have mapped out H_2O (and CO_2) impacts on ORR as function of PO_2, temperature, and contaminant concentration
Water Exchange on LSCF vs LSCF-GDC Composite Cathodes

- LSCF composite significantly broadens temperature range of water exchange dominance
- Demonstrating importance of TPBs and co-existence of O-dissociation and O-incorporation phases
LSM-YSZ composite demonstrates much greater water exchange than LSM or YSZ at much lower temp

- Composite effect for LSM-YSZ much greater than for LSCF-GDC
- Demonstrating importance of TPBs and co-existence of O-dissociation and O-incorporation phases
Comparison of ISTPX with EIS for LSCF-GDC in H\textsubscript{2}O

The presence of 3% H\textsubscript{2}O effects the low frequency arc at 450ºC but not at 750ºC consistent with the results obtained from ISTPX.
The presence of 5% CO₂ effects the low frequency arc at 450°C and at 750°C consistent with the results obtained from ISTPX.
H$_2$O Impact on LSM/YSZ Microstructural Change

Microstructural degradation under P_{H_2O} identified by isotope exchange conditions

- H$_2$O under cathodic polarization decreases LSM phase connectivity (ohmic impedance)
- H$_2$O under cathodic polarization decreases fraction of connected “active” TPBs (non-ohmic impedance)
In-Situ Conclusions/Outcomes

- Integrated heterogeneous catalysis, polarization, and microstructural characterization to provide fundamental understanding of cathode ORR and degradation mechanisms
- Demonstrated LSCF is more active than LSM and has different ORR mechanism
- H$_2$O (and CO$_2$) actively participate in ORR for both LSCF and LSM
- Identified temperature and gas composition regions where H$_2$O dominates O$_2$ surface exchange mechanism and where they are less important
- Identified composite cathode effect on O$_2$ surface exchange with H$_2$O
- Ambient humidity has a direct impact on LSM/YSZ cathode microstructural and compositional changes that degrades ohmic and non-ohmic ASR

5. “Enhancement of La$_{0.6}$Sr$_{0.4}$Co$_{0.2}$Fe$_{0.8}$O$_{3-δ}$ Activity by Ion Implantation for Low-Temperature SOFC Cathodes,” J. of Electrochem. Soci., 162, 9, F965-970, (2015).
16. “Reaction Kinetics and CO$_2$-O$_2$ Co-Exchange on Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3-δ}$”, in preparation.
17. “Chromium Poisoning Effects on Surface Exchange Kinetics of La$_{0.6}$Sr$_{0.4}$Co$_{0.2}$Fe$_{0.8}$O$_{3-δ}$”, in preparation.

but all done under absence of applied bias with no charge transfer…
In-Operando Project Objectives

Phase 1

• Develop *in-operando* apparatus for the study of SOFC cathode oxygen surface exchange properties, under operating conditions of applied voltage / current.

• Determine surface exchange mechanisms and coefficients using *in-operando* 18O-isotope exchange of LSM and LSCF powders, and their composites with YSZ and GDC.

Phase 2

• Determine effect of microstructure, macrostructure and composition on the cathode performance, O$_2$ surface exchange mechanism and coefficient.

• Integrate results and identify cathode composition/structures and operational conditions to reduce ASR and enhance durability.

• Develop unifying theory for the numerous surface exchange processes obtained by ECR, IIE, IEDP, etc.

• Apply the model results on existing surface exchange coefficient data, and identify cathode compositions and structures with enhanced activity and durability.
Develop *In-Operando* Isotope Exchange System

In-Situ

\[\text{O}_2 + \text{V}_{O^x} = 2\text{O}_{O^x} \]

In-Operando

\[\text{O}_2 + 2\text{V}_{O^{xx}} + 4e' = 2\text{O}_{O^x} \]

Graphs

[Graph showing concentration of various isotopes over time.]
Develop *In-Operando* Isotope Exchange System

- Convert *in-situ* heterogeneous catalysis set-up to *in-operando* reactor to measure cathode ORR under applied bias
Develop *In-Operando* Isotope Exchange System

- Now able to *in-operando* determine cathode ORR by simultaneous cell current-voltage behavior under applied bias with *in-situ* heterogeneous 18O-isotope exchange.
In-Operando Determination of LSCF k_{ex} as Function of Potential

- *In-operando* determination of LSCF surface exchange coefficient k_{ex} as a function of cathodic bias
In-Operando Determination of LSCF k_{ex} as Function of Potential

- k_{ex} as a function of cathodic bias is most sensitive at short time
In-Operando Determination of k_{ex} as Function of Potential

Tentative Model

\[O_{2(gas)} \leftrightarrow 2O + 4e^- \leftrightarrow 2O^{2-} \]

- Under no polarization, the fitting of accumulation profiles to obtain exchange rate (R^*_{ex}):
 \[\frac{M(t)}{M_\infty} = 1 - \exp(-R^*_{ex} t) \]

- The 3D exchange rate coefficient, k_{ex}, under polarization (D – particle diameter):
 \[k_{ex} = \frac{D}{6} \left(R^*_{ex} - \frac{I}{2FN} \right) \]

- Implementing the Tafel relation between I and η:
 \[I = I_0 \exp(C\eta); \quad C = \frac{\alpha ZF}{RT} \]
 \[k_{ex} = \frac{D}{6} \left(R^*_{ex} - \frac{I_0 \exp(C\eta)}{2FN} \right) \]

- Relationship between k_{ex} and overpotential

In-Operando Determination of k_{ex} as Function of Potential

- First ever direct *in-operando* measured relationship between surface exchange coefficient and electrochemical overpotential
 - data from *in-operando* experiment and lines are equation
 \[
 k_{ex} = \frac{D}{6} \left(R^*_e - \frac{I_0 \exp(C\eta)}{2FN} \right)
 \]
 - demonstrated for both LSCF and LSM
In-Operando Determination of k_{ex} as Function of Potential

- First ever direct *in-operando* measured relationship between surface exchange coefficient and electrochemical overpotential

 - data from *in-operando* experiment and lines are equation

 \[k_{ex} = \frac{D}{6} \left(R_{ex}^* - \frac{I_0 \exp(C\eta)}{2FN} \right) \]

 - demonstrated for both LSCF and LSM

- Potentially first ever unifying theory for k_{ex} between isotope exchange (IIE, IEDP) and electroanalytical (e.g., ECR) techniques

 - dashed lines from equation using open circuit k_{ex} and cell Tafel results

 \[I = I_0 \exp(C\eta); \quad C = \frac{\alpha ZF}{RT} \]
Summary/Conclusions

- Developed an *in-operando* apparatus for the study of SOFC cathode oxygen surface exchange properties under operating conditions of applied voltage / current

- For the first time determined the oxygen surface exchange coefficient \(k_{ex} \) *in-operando* as a function of applied electric potential with *in-situ* \(^{18}\text{O}\)-isotope exchange

- Developed direct relationship between electrochemical (I-V) performance and \(k_{ex} \) as well as unifying theory to relate isotope exchange obtained \(k_{ex} \) to other electroanalytic (e.g., ECR) techniques
Future Work

- Determine in-operando k_{ex} for varying A/B site ratios in LSM and LSCF and their composites with YSZ and GDC and determine how changes under degradation.

If Phase 2 Awarded

- Develop and validate in-operando button cell apparatus.
- Extend to effect of microstructure, macrostructure and composition on cathode performance, O_2 surface exchange mechanism and coefficient.
- Integrate results and identify cathode composition/structures and operational conditions to reduce ASR and enhance durability.
- Apply the model results on literature k_{ex} data, to identify cathode compositions and structures with enhanced activity and durability.