

Demonstration of Advanced CO₂ Capture Process Improvements for Coal-Fired Flue Gas

> DE-FE0026590 Kickoff Meeting December 1, 2015

PjM

Katherine Dombrowski Karen Farmer AECOM PjM Assistant PjM

AECOM

Steve Mascaro NETL PjM

Project Background

- Southern Company Services Research and Technology Management group is charged with investigating and demonstrating new technologies applicable to the electric utility industry
- SCS owns a 25 MW amine-based CO₂ capture process (MHI's KM-CDR) at Plant Barry and has tested improvements such as the DOE-funded HES project (with MHIA and AECOM)

Site

- Total site capacity 2700 MW
 - 1500 MW coal
 - 1200 MW NGCC

PLANT BARRY ENVIRONMENTAL PROJECTS

25 MW KM-CDR at Plant Barry

- Funded by industry consortium
- Amine-based CO₂ capture/compression
- Replicates conditions of a commercial unit
- Storage in oil field (SCS and SECARB)
- Designed for 90% CO₂ capture, 500 metric tons CO₂/day and compression to 1500 psig

Project Background

SCS and MHI have considered possible process improvements during operation of KM-CDR:

- Pre-Scrubber
- Absorber
- Regenerator
- Compressor
- Solvent

Project Objectives

- Develop and quantify viable cost and energy saving methods for the capture and sequestration of CO₂ produced from pulverized coal (PC) combustion
 - BIR: Construct and test built-in-reboiler to confirm technology is suitable for the regenerator
 - PMM: Complete Particulate Management Test to determine maximum allowable PM concentration and determine if solvent purification steps can be eliminated
 - NSL: Demonstrate performance and energy efficiency improvements of New Solvent A over KS-1 and MEA
- Evaluate the technical and economic feasibility of full-scale implementation of this

Built-in Reboiler (BIR)

- BIR will replace regenerator reboiler and stripper with integrated unit
 - Reduced capital and operating cost and footprint
- Welded-plate heat exchanger, designed for high condensation or evangration duty,

Built-in Reboiler (BIR) Testing Details

- Reboiler Performance Test:
 - Confirm design performance
- Parametric Testing:
 - Assess performance under a range of operating parameters
- Long Term Operation Test:
 - Assess long term operability
- Internal Inspection:
 - Inspect for potential damage or fouling

Particulate Matter Management (PMM)

- Mimic higher PM levels in the flue gas via partial bypass of Plant Barry wet FGD
- Solvent purification system will be turned off to mimic removal of the filtering process
- Quench, deep FGD and reclaimer are expected to control increased PM and SO₂ to level needed to prevent performance degradation
- Reduce capital and operating cost for the CCS system

Particulate Matter Management (PMM) Testing Details

-Baseline Test:

- Confirm baseline conditions and performance without FGD bypass
- -Higher PM Loading Test:
 - With FGD bypass, measure PM concentration and suspended solids (SS), and monitor conditions and performance
- -Reclaiming Test:
 - Operate reclaimer to remove and analyze SS
- –Inspection:
 - Conduct internal inspection potential damage, accumulation or fouling.

New Solvent A Testing (NSL)

- Replacement of KS-1 solvent with New Solvent A
 - Developed by MHIA
 - Amine based solvent similar to KS-1

Advantages of New Solvent A

- New Solvent A regeneration steam consumption
 - Reduced 5.1% from KS-1
 - Reduced 37% from MEA
- Steam consumption savings significantly outweigh cost increases due to higher solvent circulation

	Relative Companson of Solvent Characteristics						
NC		MEA	KS-1	New Solvent A			
	Steam Consumption	1	0.68	0.65			
m	Solvent Circulation	1	0.6	0.83			
•••	Solvent Degradation	1	0.1	0,1			
	Corrosion Inhibitor Required	Yes	No	No			
	Solvent Emission	1	0.1	0.1			

Polativo Comparison of Solvant Characteristics

it to

New Solvent A Testing (NSL) Details

SOUTHERN COMPANY

- Baseline Test:
 - Confirm baseline performance of New Solvent A
- Optimization Test:
 - Vary operating parameters to verify performance
- Long Term Operation Test:
 - Confirm performance and verify solvent degradation rate
- Reclaiming Test:
 - Perform reclaiming operation to confirm operability and stability.
- Inspection:
 - Conduct internal inspection for potential corrosion

BIR, PMM and NSL Performance Comparison with DOE Targets

	Supercritic	Supercritic	Supercritical PC	Supercritical PC w	DOE Targets
	al PC w	al PC w	w KM-CDR CCS	KM-CDR CCS with	
	MEA CCS	KM-CDR	with HES, BIR,	HES, BIR, PMM	
	(Case 12)	CCS with	PMM and NSL	and NSL	
		HES		+ Aux. Turbine	
COE	106.6	81.9	80.6	76.9	74.6 by 2030
(mils/kW)					(-30% from Case
					12)
LCOE	135.2	103.9	102.3	97.5	94.6 by 2030
(mils/kW)					(-30% from Case
					12)
Cost of	47.8	30.7	29.2	25.5	40.0 by 2025
					30.0 by 2030
capture					
(\$/tonne)					

SOUTHERN

Challenges and Risk Management

- First test of New Solvent A on coal-fired flue gas
 - All indications are that it will perform well
- BIR has been tested at 2.5MW and performed well
- Trade off between schedule and desired test plan
 - PMM testing with New Solvent A not currently included

Project Organization: Phase

Project Structure: Phase 1 Budget

Phase 1 (BP1) will last 1 year (10/1/15-9/30/15) BP1 Costs

Project Schedule

Phase 1 (BP1) Schedule

			2015			2016						
			Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul
Budget Period	t Period			Q1 Q2			Q3		Q4			
Months After Contract Award	Start Date	Ellu Dale	Budget Period 1									
Task 1: Project Management and Reporting	10/1/2015	9/30/2015										
1.1 Project Management	10/1/2015	9/30/2015										
Task 2: Techno-Economic Analysis	10/1/2015	12/31/2015										
2.1 Techno-Economic Analysis Reporting	10/1/2015	12/31/2015										
Task 3: EH&S Analysis	1/1/2016	3/31/2016										
3.1 EH&S Reporting	1/1/2016	3/31/2016										
Task 4: Front End Design and Target Cost Estimate	1/1/2016	3/31/2016										
4.1 Basic Engineering	1/1/2016	3/31/2016										
4.2 Target Cost Estimation	1/1/2016	3/31/2016										

Project Structure: Tasks

- Task 1: Project Management and Reporting – BP1-BP5
- Task 2: Techno-Economic Analysis
 BP1
- Task 3: EH&S Analysis
 BP1
- Task 4: Front End Design and Target Cost Estimate
 BP1

Task 1: Project Management

- SOUTHERNANY
- Subtask 1.1- Project Management
 - Develop project and ensure coordination with each other and DOE/NETL including project management, submission of deliverables following the PMP

Task 2: Techno-Economic Assessment

- Creation and submission of preliminary Techno-Economic Assessment for 550 MW Greenfield Pulverized Coal plant including:
 - General process flow diagrams
 - Material and energy balances
 - Stream Tables
 - Economic analysis following QGESS
 - Cost estimates for equipment and consumables

Task 3: EH&S Analysis Report

- Creation and submission of EH&S Analysis Report for test objectives:
 - Summary of HAZOP
 - Summary of potential emissions
 - Regulatory implications of emissions

Task 4: Front End Design and Target Cost Estimate

- Subtask 4.1- Basic Engineering
 - Final PFD, General Arrangement and Elevation Sketch
 - Pilot plant utilities and waste generation
 - BIR feed conditions
 - Start-up, steady-state, and shut-down procedures
- Subtask 4.2- Target Cost Estimation
 - A cost estimate covering tasks related to execution of the proposed items

Phase 1 Project Milestones

Milestone	Budget Period	Associated Task(s)	Milestone Description	Planned Completion Date	Proposed Verification Method
1	1	1	Updated Project Management Plan	10/31/15	PMP file
2	1	1	Kick Off Meeting	11/30/15	Presentation file
3	1	1, 2	Final Draft Techno- Economic Analysis Submitted	12/31/15	Draft Techno- Economic Analysis file
4	1	4	Target Cost Estimate and EH&S Analysis Finalized	3/31/16	Quarterly Progress Report

- 10/31/15 Updated Project Management Plan
- 12/31/15 Initial Techno-Economic Assessment
- 3/31/16 Phase 1 Technology Engineering Design and Economic Analysis Report Phase 1 Technology Gap Analysis Process model files used for Phase I systems analysis Phase 1 EH&S study Phase 1 Topical Report Updated Project Management Plan Phase 2 Environmental Questionnaire 6/30/16 **Executed Financial agreements Executed Host Site Agreements**
 - Updated Representations and Certifications

Current Project Status

SOUTHERN COMPANY

- Initial TEA: In progress
- EH&S Study: Initial work
- Target Cost Estimate: Not yet started

Questions?

