

Improvement of Alstom's Chilled Ammonia Process using Membrane Technology

Large Pilot Scale Post Combustion CO₂ Capture No. FE0026589

National Energy Technology Laboratory \ Department of Energy
October 28, 2015

Kick-Off Meeting Agenda

Introductions

Award overview

Alstom

- Project Background
 - Brief overview of Recipient
 - Discussion of research leading to this award
- Project Objectives
- Project Team
 - Team member overviews
- Project Structure
 - Budget Period (length and cost)
 - Brief description of Tasks by Budget Period
- Project Schedule
- Project Management Plan
 - Milestones
 - Risk Management
- Deliverables
- Current Project Status
- Questions
- Closing Comments

Discussion Topics

Project Background (Recipient Overview, Summary of Research)

Project Objectives

Project Team

Project Structure

Project Management Plan & Schedule

Project Deliverables

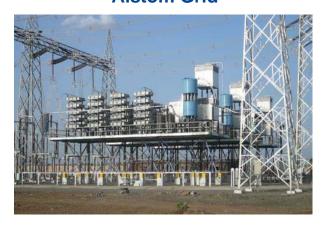
Current Status & Next Steps

Project Background

Recipient Overview Alstom

Alstom: Three main activities in four sectors

Equipment & services for power generation Alstom Thermal Power


Alstom Renewable Power

Department of Energy NETL, October 21, 2015

Equipment & services for power transmission

Alstom Grid

Equipment & services for rail transport

Alstom Transport

Alstom Thermal Power Turnkey solutions, Products and Services offering

Steam & Gas turnkey power plants

Components for Gas, Steam & Nuclear

Air Quality Control Systems

Services + Operation & Maintenance for Plants & Equipment

... for new power plants and the installed base

CO2 Capture Technologies developed by Alstom

CO₂ capture technologies pursued by Alstom

Post-combustion

(New + retrofit)

- Advanced Amines Process
- Chilled Ammonia Process

2nd

Regenerative Calcium Cycle (RCC)

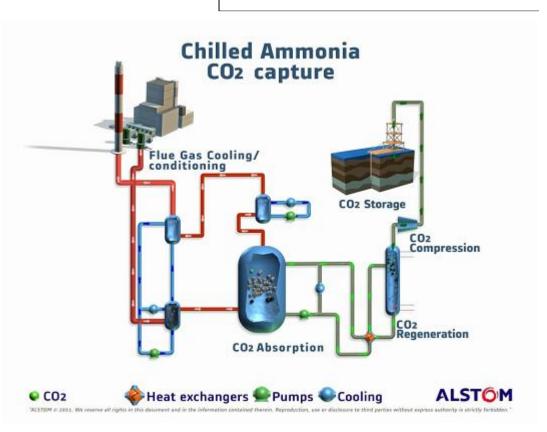
Oxy-combustion

(New + retrofit)

Oxy-combustion with ASU

2nd Generation

Chemical Looping Combustion (CLC)


Chilled Ammonia Process (CAP) Features

Principle

- Ammonia based solution reacts with CO₂ of cooled flue gas
- Raising the temperature reverses this reaction, pressurized CO₂ is released, the solution is recycled

Advantages

- High CO₂ purity
- Tolerant to oxygen and flue gas impurities
- Stable reagent, no degradation or emission of trace contaminants
- Low-cost, globally available reagent
- Commercial by-product

Membrane Improvements - Summary

Membrane technology improvements for the CAP Large Pilot include:

- Reduction in CAP energy demand
 - Absorber chiller duty can be minimized significantly.
 - Stripper duty can be reduced significantly or eliminated.
 - These and other membrane concept for CAP can reduce overall specific steam energy by 20-30%.
 - Stripper and associated heat exchanger sizes can be reduced.
- Overall CAP Improvement
 - Projected overall reduction in cost of electricity depend upon membrane initial and lifecycle costs.
 - Phase I study to further define the project incremental change in cost of electricity with CAP membrane concepts.

Project Background

Recipient Overview Technology Center Mongstad

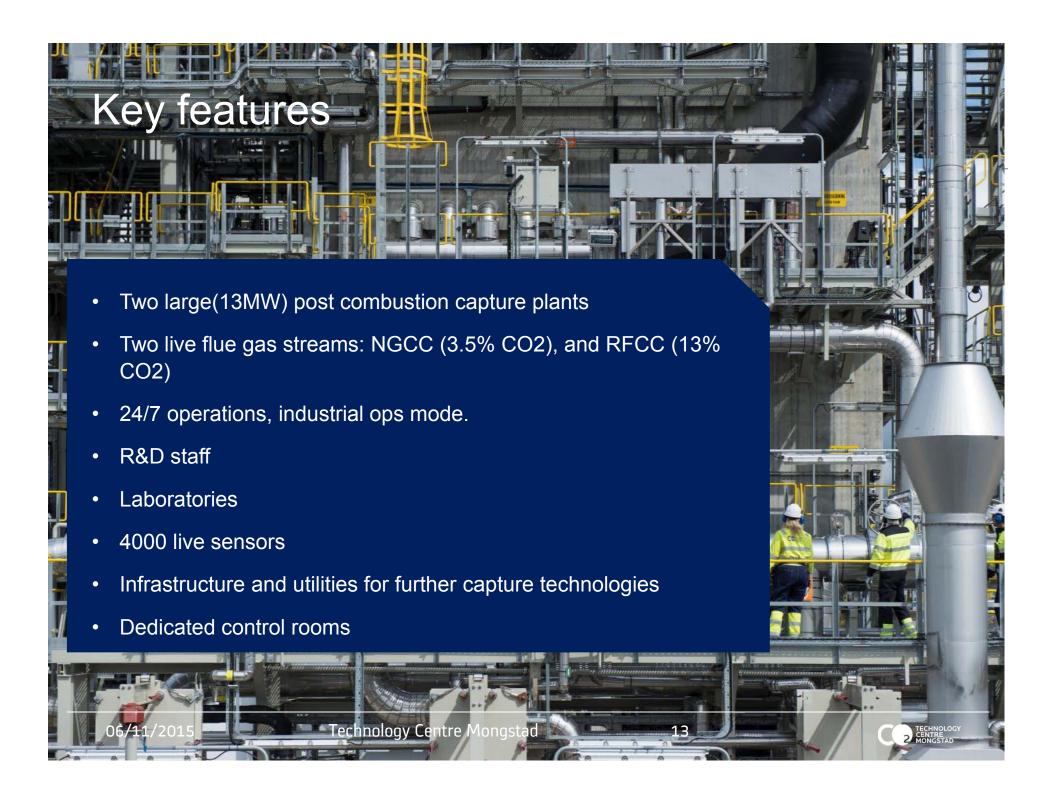
NGCC Power Plant

Unique industrial scale testing flexibility

Three operational areas:

Refinery

Area for future development

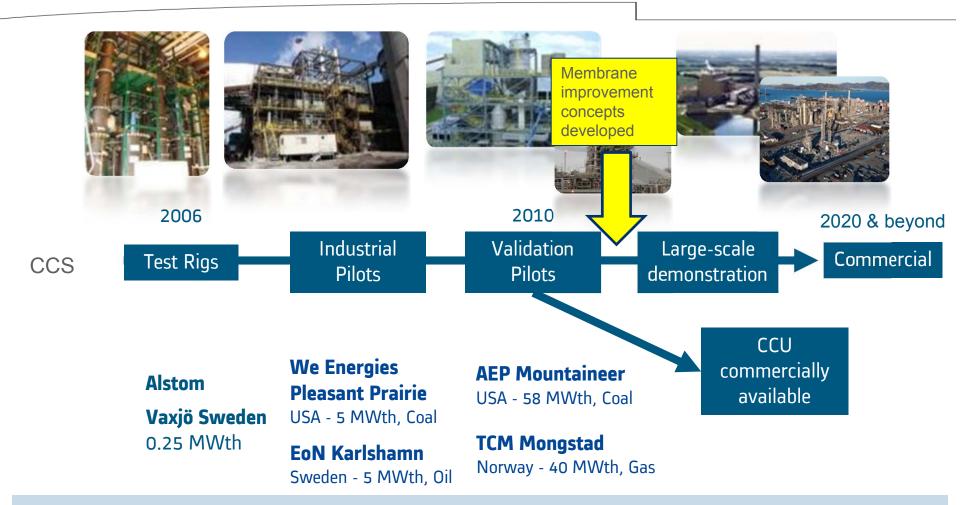

Amine plant


Chilled ammonia plant

R. Catalytic cracker

Two feed streams

- NGCC flue gas (3.5 % CO2)
- Refinery cracker gas (13% CO2)



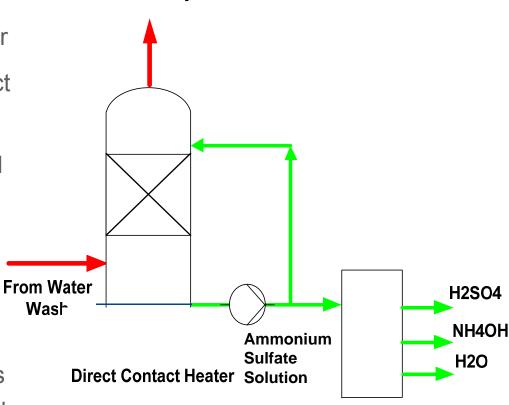
Project Background

Research leading to Award

Chilled Ammonia Process Update on Alstom roadmap

Roadmap to commercialization, 90% CO₂ capture demonstrated

Membrane Concepts for Development


- Membrane Concept 1: Electrodialysis for DCC-DCH to dissociate ammonium sulfate
- Membrane Concept 2: Reverse osmosis to concentrate stripper feed
- Membrane Concept 3: Reverse osmosis membrane for concentration of CO₂ wash bottoms

Improvement Concepts - Membrane Technology

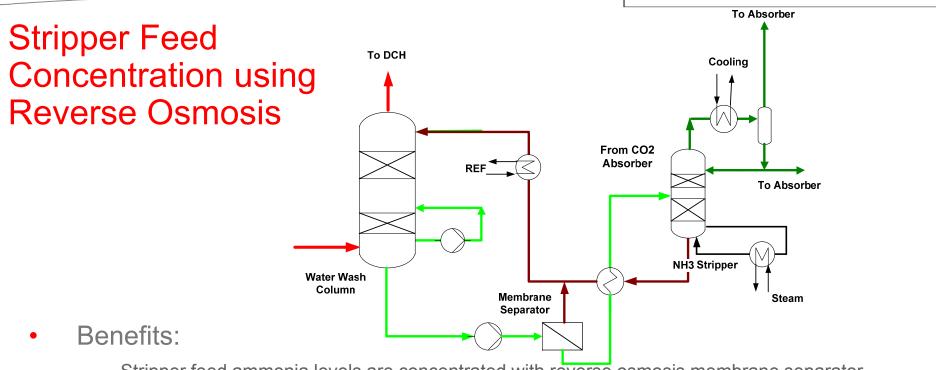
Electrodialysis for Ammonium Sulfate Dissociation

- Benefits
 - Use of electrodialysis bipolar membrane to convert ammonium sulfate byproduct to sulfuric acid, aqueous ammonia, and water
 - Reduction in sulfuric acid and ammonia reagent consumption
 - Elimination of ammonium sulfate byproduct stream (beneficial for locations where off-taker is not available).
 - Reduction in operating costs
 - Reduction in reagent (typical: anhydrous ammonia) storage on site

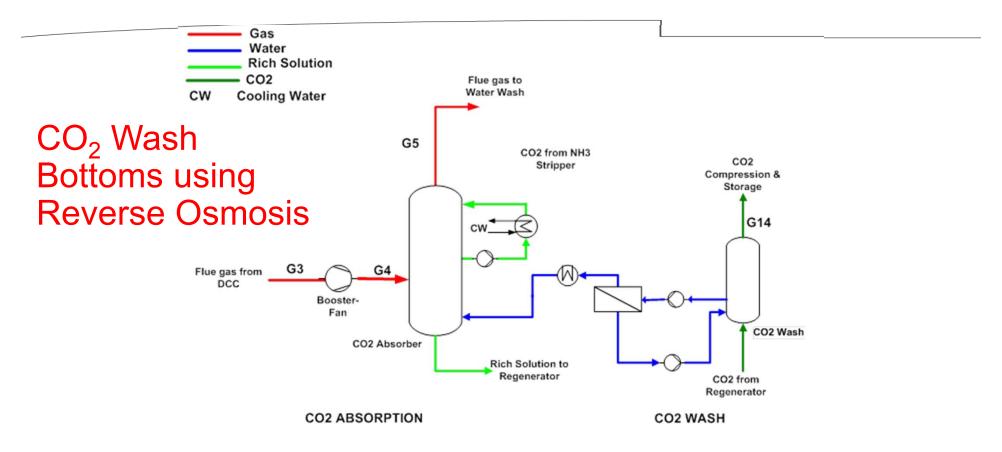
To Chimney

Electrodialysis Bipolar Membrane

CAP Membrane Development – Bench Scale ED Testing

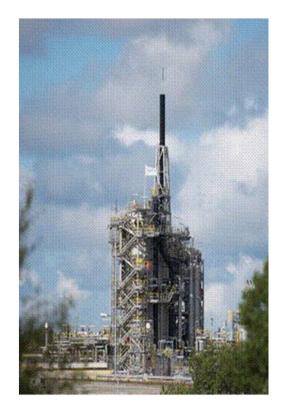

- Bench-scale Testing
 - Bipolar membrane electrodialysis by ElectroSep
 - Membrane systems (Fumatech)
 - Anode exchange membrane
 - Cathode exchange membrane
 - Bipolar membrane
 - Initial Test program completed
 - Parametric test program using synthetic solutions
 - Results indicate initial membrane selection is feasible

Electrodialysis Test Unit ElectroSep Test Facilities Saint Lambert, Quebec


Improvement Concepts - Membrane Technology

- Stripper feed ammonia levels are concentrated with reverse osmosis membrane separator resulting in reduced feed flow rate
- Higher ammonia slip from the absorber is allowable.
- Absorber chiller duty can be minimized significantly.
- Stripper duty can be minimized significantly or eliminated resulting in specific steam energy Stripper and associated heat exchanger sizes can be reduced by ~50% or eliminated

Improvement Concepts - Membrane Technology


Benefits:

- Utilize reverse osmosis membrane technology to concentrate CO2 wash bottoms stream
- Allows operation of the regenerator at lower pressure and higher ammonia emissions
- Allows lower pressure steam to regenerator

Proposed Next Steps

- Continue techno-economic assessment study based upon original performance projections
 - Elimination of ammonia stripper
 - Membrane ammonia rejection of >80%
 - Electrodialysis concept results suitable for scale-up to large scale pilot
- Development of new reverse osmosis membrane is not planned
- Complete reverse osmosis testing of commercial, spiral wound membrane element in parallel with study
- RO Membrane testing and membrane selection to be completed within the Phase 1 effort (as soon as possible)
- Report findings and status of test results periodically

CAP Validation Pilot on Gas CO2 Technology Center Mongstad

Discussion Topics

Project Background (Recipient Overview, Summary of Research)

Project Objectives

Project Team

Project Structure

Project Management Plan

Project Deliverables

Current Status & Next Steps

Project Objectives

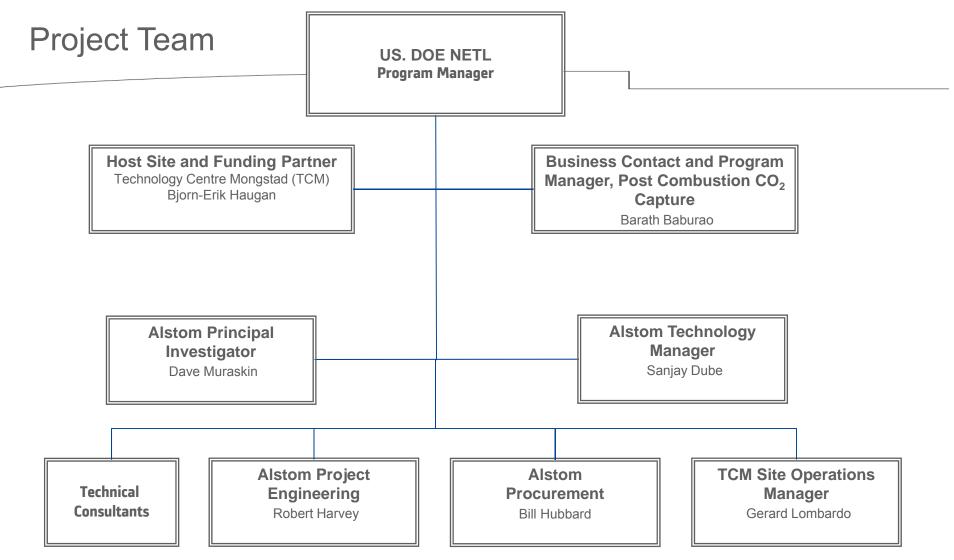
- Implement several improvement concepts utilizing membrane technology at an existing CAP large-scale pilot plant to lower the overall cost of the Chilled Ammonia Process (CAP) CO₂ capture technology.
- Leverge CAP experience in collaboration with Technology Centre Mongstad, the Host Site, which operates an existing CAP large pilot facility (approximately 15 MWe equivalent) in Norway.
- Complete a preliminary techno-economic assessment (TEA) and technology gap analysis of membrane concepts for the Chilled Ammonia Process at a full scale 550 MW power generation facility to show the concepts have the potential to meet DOE's desired cost and performance goals.
- Complete a firm estimate of the costs and schedule needed to modify the existing large pilot facility at the host site.
- Develop key project success criteria values and risks.

Discussion Topics

Project Background (Recipient Overview, Summary of Research)

Project Objectives

Project Team


Project Structure

Project Management Plan

Project Deliverables

Current Status & Next Steps

- ElectroSep
- General Electric Power & Water/Purecowater
- Georgia Tech

Discussion Topics

Project Background (Recipient Overview, Summary of Research)

Project Objectives

Project Team

Project Structure

Project Management Plan

Project Deliverables

Current Status & Next Steps

Project Structure-Budget Period (Length and Cost)

Phase 1 Funding Profile

PHASE 1	1-Oct-15	1-Nov-15	1-Dec-15	1-Jan-16	1-Feb-16	1-Mar-16	1-Apr-16	1-May-16	1-Jun-16
DOE NETL Funding									
Profile	\$0	\$123,173	\$246,347	\$369,520	\$492,694	\$615,867	\$739,041	\$831,421	\$923,801
Project Forecast	\$0	\$166,231	\$332,462	\$498,694	\$664,925	\$831,156	\$997,387	\$1,122,061	\$1,246,734

Majority of work completed by March 31, 2016 with submission of reports.

Project Structure-Task by Budget Period

Task 1.0 Project Management and Planning

- Schedule Issue for Phase 1
- Monthly Schedule Update
- Monthly Budget Update
- Schedule issue for Phase 2
- Monthly Update Reports
- Papers and Conference

Task 2.1 Phase 1 Design

- PFD for 550 MW TEA
- PFD for 15 MW Pilot
- Mass Balance for 550 MW TEA
- Mass Balance for 15 MW Pilot
- Data sheet for 15 MW Pilot
- Equipment Summary Sheet for 550 MW TEA

Project Structure- Task by Budget Period

Task 2.2 Cost and Schedule for Phase 2

- Cost of fabricating skids and shipping to TCM
- Cost of Installation and Commissioning Skids
- Cost of Operating Skids for Testing period
- Cost to decommission Skids

Task 2.3 Issue Reports and Analysis

- Issue TEA addressing 3 Concepts
- Elimination of CAP Ammonia Sulfate Byproduct by ED
- Reduction of CAP Ammonia Stripper Energy by Membrane
- Reduction of CAP CO2 regeneration Energy
- Issue Gap Analysis identifying missing data
- Issue a Topical Report and Firm Cost for testing 3 Concepts at TCM

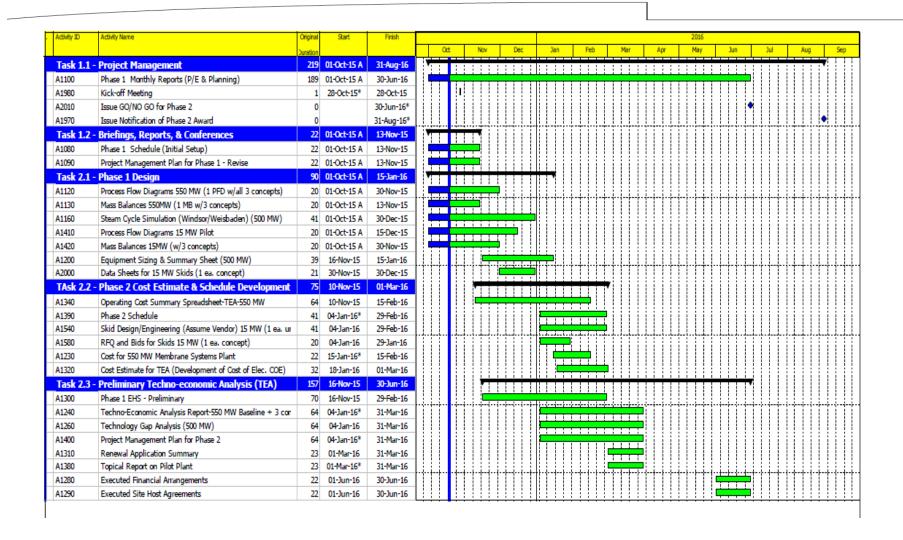
Discussion Topics

Project Background (Recipient Overview, Summary of Research)

Project Objectives

Project Team

Project Structure


Project Management Plan

Project Deliverables

Current Status & Next Steps

PMP- PROJECT SCHEDULE

PMP- MILESTONES LOG for WORK

	Budget			Planned	
Milestone	Period	Task	Milestone Description		Verification Method
	Period		Milestone Description	Completion	
1	1	1.1	Kick-Off Meeting	10/28/2015	Meeting
2	1	1.1	Updated Project Schedule	10/28/2015	Presentation
3	1	1.1	Updated Project Management Plan	11/15/2015	Report File
4	1	2.1	Mass Balance 550 MW (C, S, and Water) for TEA	11/15/2015	Report File
5	1	2.1	Mass Balance 15 MW (C, S, and Water) for Pilot plant	11/30/2015	Report File
6	1	2.1	Steam Cycle Simulations for TEA	11/30/2016	Report File
7	1	2.1	PFD & Block Flow diagram 550 MW TEA	11/30/2015	Report File
8	1	2.1	PFD & Block Flow diagram 15 MW Pilot	12/15/2015	Report File
9	1	2.1	Data Sheet for 15 Mw skids (1 each concept)	12/30/2015	Report File
10	1	2.1	Equipment Summary Sheet 550 MW	1/15/2016	Report File
11	1	2.2	RFQ Skids 15 MW	1/4/2016	Report File
12	1	2.2	Vendor Engineering Skids complete 15 MW	2/28/2016	Report File
13	1	2.2	Capital Cost Estimate for TEA-550 MW	2/15/2016	Report File
14	1	2.2	Operating Cost Estimates for TEA-550 MW	2/15/2016	Report File
15	1	2.2	Cost of Electricity for TEA-550 MW	3/1/2016	Report File
16	1	2.2	Itemizerized Cost Summary-550 MW	3/15/2016	Report File
17	1	2.2	Phase 2 Schedule	2/29/2016	Report File
18	1	2.3	Phase 1 EHS preliminary assessment	2/29/2016	Report File
19	1	2.3	Topical Report with Itemized Cost Summary for Phase 2	3/31/2016	Presentation
20	1	2.3	Updated PMP for Phase 2	3/31/2016	Report File
21	1	2.3	TEA Report 550 MW	3/31/2016	Presentation
22	1	2.3	GAP Analysis	3/31/2016	Presentation
23	1	2.3	Application for Renewal (write-up)-Phase 2	3/31/2016	Presentation
24	1	2.3	Executed Financial Arrangments	6/30/2015	Report File
25	1	2.3	Executed Site Host Agreements	6/30/2015	Report File
na	na	na	GO/NO GO for Phase 2	6/30/2015	Notification
na	na	na	Notification of Phase 2 Award	8/31/2016	Notification

Agenda

Project Background (Recipient Overview, Summary of Research)

Project Objectives

Project Team

Project Structure

Project Management Plan

Project Deliverables

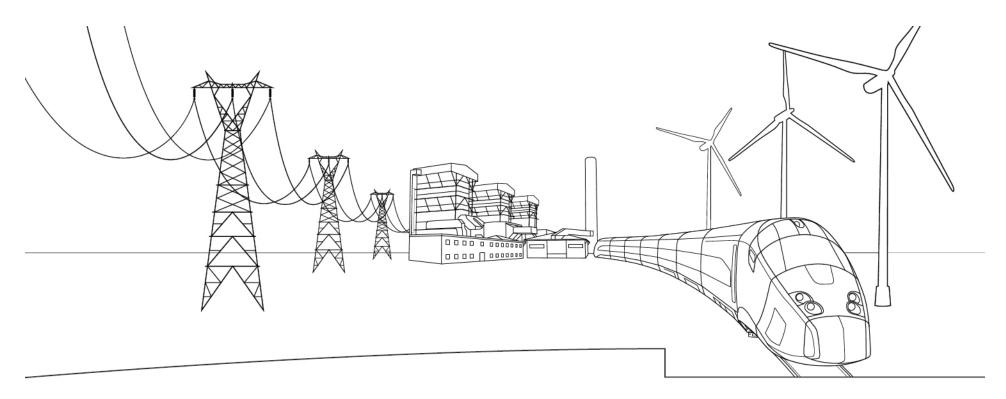
Current Status & Next Steps

Project Deliverables

Updated PMP and Schedule	Nov 13, 2015
Phase 1 Technology Engineering Design and Economic Analysis	March 31, 2016
Phase 1 Technology Gap Analysis	March 31, 2016
Phase 1 EH&S	March 31, 2016
Phase 1 Topical Report and Cost for Phase 2	March 31, 2016
PMP for Phase 2	March 31, 2016
Completed Contract Agreements (Site Host, Financial, Representations and Certifications)	June 30, 2016

Agenda

Project Background (Recipient Overview, Summary of Research) **Project Objectives** Project Team Project Structure Project Management Plan Project Deliverables



Current Status

Current Project Status

Tasks	Status
Agreements with sub-recipients	In-progess
Project Schedule (Level 1)	Developed
Project Schedule (Level 3)	In-progress
PMP	In-progress
Process Design Basis	In-progress
PFD	In-progress
Mass Balances and Simulations	In-progress

www.alstom.com

