Polyphosphazene Based Membranes for Gas Separation

Dr. Hunaid Nulwala Liquid Ion Solutions LLC Pittsburgh, PA

Membrane/Solvent Integrated Process

Membrane Needs

- Commercial membrane materials
 - Selectivity ≈ 40
 - Permeability ≈ 200
- Less conventional membrane needed to make substantial improvements
 - Supported liquids
 - Mixed matrix membranes
- Mixed matrix membranes
 - Better particles (Zeolites, MOFs)
 - Improved polymers
 - Controlled interaction of polymer with particles

The Trouble with Mixed Matrix Membranes

Insight

J. Mater. Chem. A, **2015**, 3, 5014-5022 U.S. Patent Application number: 14/519,743

Interface

If you can't beat 'em, join 'em!

- Makes use of envelopment effects which have plagued mixed matrix membranes
- Diffusion phenomena determined by interactions with the particle and polymer surface
- Possibility of using simple nanoparticle fillers
- Advanced polymers allow an excellent starting point

Plan of Attack for Mixed Matrix Membranes

5-10 nm

- Use simple nanoparticle fillers
- Surface modify the particles to tune optimal interactions with CO₂ and the polymer
- Employ an advanced polymer with good compatibility and CO₂ transport properties
- Create a membrane in which diffusion phenomena are determined by interactions with the particle and polymer surface

Polymer of Choice

Polymer Screening

$$\begin{pmatrix} \begin{pmatrix} h \\ h \end{pmatrix} \end{pmatrix}_{y} \begin{pmatrix} h \end{pmatrix} \end{pmatrix}_{y} \begin{pmatrix} \begin{pmatrix} h \\ h \end{pmatrix} \end{pmatrix}_{y} \begin{pmatrix} h \end{pmatrix} \end{pmatrix}_{y} \begin{pmatrix} \begin{pmatrix} h \\ h \end{pmatrix} \end{pmatrix}_{y} \begin{pmatrix} h \end{pmatrix} \end{pmatrix}_{y} \begin{pmatrix} h \\ h \end{pmatrix}$$

Membrane Fabrication

Challenges

- Not a film former
- Sticky
- Does not have required mechanical properties

$$\begin{pmatrix}
0 & 0 & 0 \\
-1 & 0 & 0
\end{pmatrix}_{z}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
-1 & 0 & 0
\end{pmatrix}_{y=3\%}$$

Gas Testing Systems and Performance Testing

- Mixed Gas Selectivities
- Testing in Presence of Moisture
- Testing in Presence of Contaminants

Polymer Membrane Results

Surface Functionalized Nanoparticles

Interfacial Enveloped Composite Membranes

Membrane performance

	Selectivity	Permeability
		(Barrer)
MEEP	62	250
MEEP-IPN	42	500
MEEP-IPN 10%	41	659
MEEP-IPN 40%	44	1609

$$\begin{pmatrix}
0 & 0 & 0 \\
-1 & 0 & 0
\end{pmatrix}_{z}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{pmatrix}_{y=2\%}$$

Membrane Performance

Cusp of a Major Breakthrough

Acknowledgement

Liquid Ion Solutions, Carbon Capture Scientific and Penn State University gratefully acknowledge the support of the United States Department of Energy's National Energy Technology Laboratory under agreementDE-FE0026464, which is responsible for funding the work presented.

- Dr. Scott Chen
- Dr. Zijiang Pan
- Dr. Zhiwei Li
- Prof. Harry Allcock
- Dr. Zhongjing Li
- Dr. David Luebke
- Brian Radka

Permeability Vs. Permeance

