In-Operando Evaluation of SOFC Cathodes for Enhanced ORR Activity and Durability

US Department of Energy, National Energy Technology Laboratory, Contract No. FE0026190

Eric D. Wachsman University of Maryland Energy Research Center

www.energy.umd.edu

University of Maryland, College Park, USA

Background - Limitation of ORR from EIS

Background - Experimental vs. Real Microstructures

Real Cathode	Heterogeneous Catalysis	SIMS Depth Profile	Conductivity Relaxation	Heterostructure
		Bulk Sampl	e Thin Film	
Structure/Morphology • Random crystallogra • 3-phase-solid-gas in ORR Kinetics • Surface controlled	aphic faces iterfaces	 Random (<i>bulk</i>) to or crystallographic factor 2-phase-solid-gas in Bulk samples diffusion Thin film samples surply but strained 	rdered (<i>thin film</i>) es nterface on controlled rface controlled	 Single crystal face 3-phase-solid-gas interface Surface controlled but strained and only for specific crystallographic orientation
Kinetic Parameters				
• k_{ex} , k_{in} , D_{surf} , $D_{b/gb}$	• k _{ex} , k _{in} , D _b , (D _{surf})	• D _{b/gb} (k _{in})	• k _{in} , D _b , (D _{surf})	• k _{in} , D _{surf} , D _{b/gb}
PolarizationBias current	• OCP	• OCP	Small current	OCP & bias current
In-Situ O ₂ Exchange Analysis Limited 	Excellent	Limited	Limited	Limited
In-Operan	do 🚽			

Background - Fundamental ORR Mechanisms

- Switch gas to separate solid vs gas species contribution to mechanism

MARYLAND Energy Research Center

Fundamental ORR Mechanisms - Catalysis

ORR Reaction Mechanisms in Presence of H₂O and CO₂

Isotope Saturated Temperature Programmed Exchange (ISTPX)

18<mark>0</mark>180

IIE - Probes the impact of contaminants on gas phase ¹⁸O₂ exchange with cathode surface $H_{2}^{16}O$

C¹⁶O¹⁶O

ISTPX - Probes competitive ORR in presence of contaminants on ¹⁸O-labeled cathode surface

Allows experiment in ambient P₀₂ without saturating mass spectrometer

ISTPX of LSCF in 25000ppm O2 with 6000ppm D2O

O₂ exchange with lattice ¹⁸O

Mass of:
$${}^{18}O = 18$$

 $H_2{}^{16}O = 18$
 $D_2{}^{16}O = 20$
 $D_2{}^{18}O = 22$

 D_2O exchange with lattice ¹⁸O

D₂O and O₂ exchange with lattice ¹⁸O

ISTPX of LSCF in 25000ppm O₂ with 6000ppm D₂O

Temperature and PO₂ Dependence of LSCF in D₂O

Temperature and PO₂ Dependence of LSCF in D₂O

Comparison of LSCF and LSM Temp-PO₂ Dependence in D₂O

- LSCF more active toward water exchange than LSM
- Water exchanges with LSM only at high temp in presence of O2

Effect of Composite Cathodes on Surface Exchange

- From our previous observation LSCF-GDC and LSCF have similar exchange kinetics due to both having high oxygen vacancy concentration
- While LSM-YSZ is dramatically enhanced relative to LSM indicating greater importance of TPBs and co-existence of O-dissociation and O-incorporation phases Journal of The Electrochemical Society, 158 (3) B283-B289 (2011)

Surface Exchange Coefficients of Composite Cathode Materials Using In Situ Isothermal Isotope Exchange

E. N. Armstrong,",* K. L. Duncan,* and E. D. Wachsman h.***

"Florida Institute for Sustainable Energy, University of Florida, Gainesville, Florida 12611, USA "University of Maryland Energy Research Center, University of Maryland, College Park, Maryland 20742, ESA

Comparison of LSCF and Composite LSCF-GDC in D₂O

Comparison of LSCF and Composite LSCF-GDC in D₂O

Water Exchange on LSCF vs LSCF-GDC Composite Cathodes

- LSCF composite significantly broadens temperature range of water exchange dominance
- Demonstrating importance of TPBs and co-existence of O-dissociation and O-incorporation phases

MARYLAND Energy Research Center

Comparison of ISTPX with EIS for LSCF-GDC in H₂O

MARYLAND

The presence of 3% H₂O effects the low frequency arc at 450° C but not at 750° C consistent with the results obtained from ISTPX.

Comparison of LSM and Composite LSM-YSZ in D₂O

Comparison of LSM and Composite LSM-YSZ in D₂O

Water Exchange on LSM vs LSM-YSZ Composite Cathodes

- LSM-YSZ composite demonstrates much greater water exchange than LSM or YSZ at much lower temp
- Composite effect for LSM-YSZ much greater than for LSCF-GDC
- Demonstrating importance of TPBs and co-existence of O-dissociation and O-incorporation phases

H₂O Impact on LSM/YSZ Microstructural Change

FIB/SEM reconstruction of LSM/YSZ cathodes aged at 800°C for 500 hrs in dry and wet (3% H_2O) air with and without polarization

Skeletonization to determine microstructural connectivity

H₂O Impact on LSM/YSZ Microstructural Change

- H₂O under cathodic polarization decreases LSM phase connectivity (ohmic impedance)
- H₂O under cathodic polarization decreases fraction of connected "active" TPBs (non-ohmic impedance)

H₂O Impact on LSM/YSZ Compositional Change

STEM-EDS of symmetric cell aged at 800° C for 500 hrs with one side in dry air and the other in air with 3% H₂O

STEM-EDS maps of Aged-dry SOFC cathode near electrolyte interface

•Still distinct particles of LSM and YSZ

•Perhaps more Mn distributed throughout YSZ

While morphological changes in dry air, no observed chemical change

H₂O Impact on LSM/YSZ Compositional Change

STEM-EDS of symmetric cell aged at 800° C for 500 hrs with one side in dry air and the other in air with 3% H₂O

Observed segregation of La and Mn to YSZ grain boundaries for wet aged LSM/YSZ

Technical Approach - Phase 1

Task 1 - Project Management and Planning

• Project Management, planning and reporting in accordance with the Project Management Plan to meet all technical, schedule and budget objectives and requirements

Technical Approach - Phase 1

Task 2 - Develop *In-Operando* Apparatus for Oxygen Isotope Exchange of Cathode Materials

in-operando Isotope Exchange Reactor

• Convert *in-situ* heterogeneous catalysis set-up to *in-operando* reactor to measure cathode ORR under applied bias

Energy Research Center

ARYLAND

Technical Approach - Phase 1

- Use our specially designed system to study the changes in ORR kinetics under cathodic polarization for a wide range of A/B site ratios in LSM and LSCF, as well as dopant types (e.g., Ca for Sr or Mn for Co/Fe), and ratio of LSM and LSCF to YSZ and GDC.
- Materials investigated will be both commercial and laboratorysynthesized compositions, in order to find the most suitable composition for most stable and fastest ORR.

Project Objectives

- 1. Develop *in-operando* apparatus for the study of SOFC cathode oxygen surface exchange properties, under operating conditions of applied voltage / current.
- 2. Determine surface exchange mechanisms and coefficients using *in-operando* ¹⁸Oisotope exchange of LSM and LSCF powders, and their composites with YSZ and GDC.

