Development of a Thermal Spray, Redox Stable, Ceramic Anode for Metal Supported SOFC

Richard Hart
GE Global Research
Pitt Review July 20, 2016

Imagination at work.

SOFI Innovative Concepts and Core Technology Research
DE-FOA-0001229 Award FE0026169
Metal supported SOFC cells

Advantages:
- Integrated anode seal
- Electrolyte in compression
- Improved anode electrical contact
- Increased active area
- Lower anode polarization

Challenges:
- Dense / hermetic electrolyte
- Porous metal substrate degradation
Low-cost manufacturing

Sintered Cell Manufacturing

Electrode Layers

Thin Electrolyte Bilayer

Electrolyte

Advantages
Larger area / Scalable
Simplified sealing
Low Capex / Modular Lean Manufacturing

Thermal Spray

Leverage GE thermal spray expertise
Fuel Cell Pilot Facility – Malta NY
Traditional NiO(Ni)/YSZ anodes

• Advantages:
 – High initial electrochemical activity
 – Good electronic conductivity
 – Low cost
 – Well understood, wealth of data

• Disadvantages:
 – High redox Vol change (fuel↔air)
 – Ni particle ripening/poisoning
 – EHS concerns (NiO)
 – Sourcing concerns (REACH in Eu)
Project Plan & Deliverables

(~~$3.5M, 3 year, 25% cost share~~)

<table>
<thead>
<tr>
<th>Task</th>
<th>Owner</th>
<th>Timing</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GE Global Research</td>
<td>Months 1-36</td>
<td>• Defined by DOE; risk management, coordination, reporting</td>
</tr>
</tbody>
</table>
| 2 | GE Global Research | Months 1-12 | GE–Fuel Cells
* Derive anode layer requirements from existing systems models
* Tailor Global Research thermal spray process using single baseline composition
* Streamline (cost and lead time) powder engineering methods
* Establish redox cycle cell test procedures |
| 3 | West Virginia University | Months 1-24 | • Develop key materials properties measurements
Hand off to GRC SET1 and SET2 Anode Compositions |
| 4 | GE Global Research | Months 13-27 | • Optimize thermal spray process for improved formulations
• Go/No – Does single scaled cell (100-400cm²) meet CTQs? |
| 5 | GE Global Research | Months 28-36 | GE–Fuel Cells
* Powder scale up, cell fabrication scale up.
* Build and test, 5 kW SOFC stack for 1000 hr, Nat Gas/Sim Nat Gas fuel. |

2016

- **Jan**: Define Cell CTQ's
- **Mar**: Demonstrate Anode Layer
- **Jun**: Improved Mechanical Performance
- **Oct**: SET 1 Compositions from WVU

2017

- **Mar 31**: Define cell specifications for Go/No Go decision point (27months)
- **June 31**: Demonstrate a working all ceramic anode layer (OCV on a cell)
- **Sept 30**: Demonstrate improvement mechanical perf. (no failure @ 1 cycle)
- **Oct 1**: Deliver SET 1 compositions (WVU-> GE)
Electrochemical Model
Electrochemical Model

- Adapted simple Literature Model (Costamagna)
- Initial programming complete (Matlab)
- Completed 6 factor DOE exploring:
 - Electrode thickness
 - Particle size & ratio of particle sizes
 - Volume fraction of phases
 - Effective electron conductivity
 - Effective ion conductivity
- WVU performing screen printed electrode study for model validation/calibration (kinetics)

For our system:
Red = Gd$_{0.2}$Ce$_{0.8}$O$_{1.9}$
Black = La$_{0.35}$Sr$_{0.65}$TiO$_3$
Example DOE Results

- Wide range of electrode area conductance (1/ASR)
- Model results match qualitative expectations
- Identified regions of performance near GE goals

Quadrant 3: $P = 2$ and $\sigma_{\text{ele}} = 20 \text{ S/m}$

- Exchange current density for reactions largely unknown for these systems. Goal of WVU study.

Quadrant 2: $P = 1$ and $\sigma_{\text{ele}} = 2000 \text{ S/m}$

- Used model to aid material spec. definition
Cell Testing Results
Demonstrating Ceramic Anode Metal Supported Cells:

Sourced Engineered Powders

LST (La$_{0.35}$Sr$_{0.65}$TiO$_3$)

GDC (Gd$_{0.2}$Ce$_{0.8}$O$_{~1.9}$)

Coupon Screening Experiments

XRD, SEM, Permeability, DE, Roughness, etc...

100cm2 Cells

(2 cell stacks)

OCV, W/cm2

Redox Stability

Hart, Rosenzweig, Thomas, Northey, Bancheri, Leblanc
Stack Redox Cycling – Ni/YSZ vs. Alt Anode Stacks

Ni/YSZ

Orange = Standard Thermal Cycle w/ H2 Flow (we did two of these, to check cell health)
Red = Redox Thermal Cycle (no protective flow)

Failure!

Ni/YSZ cells fail after a single redox cycle

Ceramic anode cells survive up to 5 cycles

Confirmation of damage mechanism! (similar to mechanism previously reported for sintered Cells)

Hart, Renko, Northey
LST/GDC Anodes– Power curves (low Uf)

Agglomerated, Uncalcined, LST/GDC - Cond H Results

- Cond H – Std Substrate Prep
- Cond H – Alt Substrate Prep

- 56-88mW/cm²
- 2.5-4.1 Ω/cm²

Demonstrated working ceramic anode cells (June 31 + Sept 30 Milestones)
Next step: improve upon extreme low power density! (improve microstructure & test new formulations)
Material Conductivity Testing Results
Conductivity Test Setup (GE-GRC)
Conductivity Results – Replicate Measurements
Free Standing LST/GDC thermal spray films

Freestanding Electrode “Colder” Condition, 4%H2/N2

Average @ 800°C:
\[\sigma = 0.7 \text{ S/cm} \]
SD = 0.2

Freestanding Electrode “Colder” Condition, Air

Average @ 800°C:
\[\sigma = 0.0003 \text{ S/cm} \]
SD = 0.0001

Solatron 1287/1260, 4pt, AC impedance, ~1kHz
LST Conductivity – Effect of Sintering Atm, and Redox:

LST – 1450C sintered, effect of atm:

LST 1450C, H2 sintering
LST 1450C, Air sintering

LST Pellet Conductivity – Redox Cycling

H2, AIR, N2, H2

Conductivity during Redox
Solatron 1287/1260, 1kHz, 4pt

E-chem Model -> need to identify materials w/ >10-20S/cm after redox
WVU & GE Anode Material Development
Material Development Testing Plan

Conductivity Testing

• Screen with pressed pellets or free-standing films
• Electron Conductivity > 20S/cm (~30x improvement)
• Ion Conductivity > 1x10^{-2} S/cm (~100x improvement)

Mechanical Stability During Redox Cycling (800C)

• Redox Vol. Change target still in progress (Mech E) < GDC soft target
• Measuring vol change w/ redox dilatometry (good baseline)

SOFC Cell Testing

• WVU using 1” button testing
• GRC using 100cm2 metal supported cells (2-6 cell stacks)
Formulation Development Plan:

GE Global Research:
- Pivot: added on ceramic synthesis efforts
 - GE Targeting lower risk/reward candidates
- Pivot: Testing GE lab scale spray dry (schedule risk abatement)

WVU:
- Starting from WVU’s previous Anode Composition work
- Developed Redox Dilatometry methods
- Using 1” SOFC test bed: model validation & comp screening

Goal: thermal spray 1st new ceramic formulation by Oct 1
Lit Overview Alternative Ceramic Anodes

<table>
<thead>
<tr>
<th>Structure</th>
<th>Performance Attributes</th>
<th>Examples</th>
<th>Research Level Required (RLR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perovskite</td>
<td>Good/excellent e- or hole-conductor, low catalysis of HCs</td>
<td>LST, YST, LSCM</td>
<td>Low</td>
</tr>
<tr>
<td>Layered-Perovskite</td>
<td>Good e- conductor (very slight ionic), some catalysis of HCs</td>
<td>Sr2MgMoO${6-x}$</td>
<td>Low</td>
</tr>
<tr>
<td>Fluorite</td>
<td>Ionic conductor (very slight electronic), low/high catalysis</td>
<td>doped-CeO$_2$</td>
<td>High</td>
</tr>
<tr>
<td>Pyrochlore</td>
<td>Low e- conductor, some catalysis of HCs, high redox stability</td>
<td>doped-Gd$_2$Ti$_2$O$_7$</td>
<td>High</td>
</tr>
<tr>
<td>Ruddlesden-Popper</td>
<td>Low e- conductor, high redox stability (for Ti or Nb-oxides)</td>
<td>(Sr,La)$_3$(Mg,Nb)$_2$O$_7$</td>
<td>High</td>
</tr>
<tr>
<td>Tungsten-Bronzes</td>
<td>Good/low e- conductor, redox stable, chemical stability issues</td>
<td>Sr${0.2}$Ba${0.4}$Ti${0.2}$Nb${0.8}$O$_3$</td>
<td>High</td>
</tr>
</tbody>
</table>
Redox Dilatometry

- Change in protocol was necessary (longer dwell times)
- Redox behavior for GDC now matches lit data shapes:

CTE in Air between 25-800°C is \(~13.23\times10^{-6}\)

\(~0.2\%\) volume changes due to redox

G Mogensen, M. Mogensen|Thermochim Acta 214 (1993) 47-50
Redox Dilatometry (LST and GDC)

GDC (GRC Supplied)

CTE in Air between 25-800°C is $\sim 13.23 \times 10^{-6}$

$\sim 0.2\%$ volume changes due to redox

LST (GRC Supplied)

CTE in Air between 25-800°C is 12.51×10^{-6}

$\sim 0.02\%$ volume changes due to redox
Summary

• Demonstrated working ceramic anode cells
 Improved mechanical performance vs. NiO/YSZ anodes
 Very low power density (formulation + microstructure)

• Redox conductivity tests identified insufficient materials properties for baseline composition (LST)
 Short term microstructure optimization delayed temporarily

• Formulation development in progress and additional resources at GE added to help accelerate
GE Team:

Rich Hart
PI, testing & direction

Larry Rosenzweig, Bastiann Korevaar, Paul Thomas
Thermal Spray GRC

Stephen Bancheri, Susan Corah
Powder development

Erik Jezek, Becky Northey
Materials testing, microstructure & degradation

Dayna Kinsey, Luc Leblanc, Matt Alinger
GE Fuel Cells, scale up Thermal Spray Systems Support

Todd Striker, Andy Shapiro

Mike Vallance
Echem Model

Jae Hyuk Her, Erik Telfeyan, Matt Ravalli
Analytical Support

Johanna Wellington, Steve Duclos, Katharine Dovidenko, Vanita Mani
GE Management Support
WVU Team

Principle Investigators:
Dr. Xingbo Liua
Dr. Edward M. Sabolskya
Dr. John Zondlob

Research Assistants:
Dr. Tony Thomasa
Laura (He Qi)a

aDepartment of Mechanical and Aerospace Engineering
bDepartment of Chemical Engineering
West Virginia University
Acknowledgements

• GE Fuel Cells SOFC Team
• GE Global Research Team
• WVU (Dr. Sabolsky, Dr. Liu, Dr. Zondlo, & team)
• Steven Markovich @ DOE/NETL

• Funding provided by the US Department of Energy through cooperative agreement FE0026169

This material is based upon work supported by the Department of Energy under Award Number FE0026169. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE.