Sorbent Based Post- Combustion CO₂ Slipstream Testing

Project # DE-FE0012870

Jeannine Elliott Girish Srinivas Bob Copeland

May 20, 2014

Kick-off Meeting

Project Overview

DoE Project DE-FE0012870 Funding - Total Project \$5,880,378

• DOE: \$4,704,509

• Cost Share: \$1,175,868

Project Performance Dates

February 3, 2014 to December 31, 2017

Technical work started April 1, 2014 when we received a large batch of sorbent from our industry partner.

Approach

The Basic Idea

- TDA Research has developed:
 - A solid alkalized alumina adsorbent, and
 - An optimized CO₂ capture process

TDA's Post Combustion CO₂ Capture

Process advantages:

- An inexpensive, durable sorbent
- Regenerates with low pressure (17 psi) steam
- Operates at near isothermal conditions
- Does not require heat recovery from solids
- Extremely low heat of adsorption
- Uses counter-current operation to:
 - Maximize capture efficiency
 - Maximize sorbent loading
- The result, excellent economics

Previous Research

- This slipstream project builds on previous DoE funded research
 - Contract #DE-NT0005497
 - \$1,714,846 Project
- Investigated process in single fixed bed reactor
- Demonstrated continuous CO₂ capture in 8 bed bench-scale unit

Previous Field Testing

- Completed field testing with coal gas at Western Research Institute
- Powder River Basin Decker Coal
 - Flue gas
 - ~17 psi
 - · 11-14% CO₂
 - ~6% H₂O
 - 5-145 ppm NO
 - 2-11 ppm NO₂
 - 0-15 ppm SO₂
- > 90% Capture

Additional Optimization

- TDA and our industrial partner carried out extensive process optimization
 - New designs with equal performance, 1/9th the pressure drop and lower steam usage
- New sorbents developed with better kinetics and loadings

Current Project: Slipstream Demonstration Test

- Project Goal: Demonstrate TDA's sorbent bed technology under realistic conditions at 0.5 MW_e (~10 tpd) scale to collected data necessary for scale up to next level plant.
- Design, construction, and operation of slipstream test unit to capture CO₂ from flue gas at the National Carbon Capture Center (NCCC)

Project Scope

Project Schedule

- Budget Period 1: Design
 - April 2014 to June 2015
- Budget Period 2: Construction & Installation
 - July 2015 to Sept 2016
- Budget Period 3: Operation
 - Oct 2016 to Dec 2017

Budget Period 1

Budget Period 1 Schedule

ID	Task Name	Start	Finish	Feb	Mar	Apri	May	Jun	July	Aug	Sep	t Oct	Nov	Dec	Jan	Feb	Marc	April	May	Jun
1	Task 1. Project Management	2/3/2014	6/1/2017																	
2	Milestone 1-1: PMP	5/1/2013	5/15/2013				*													
3	Milestone 1-2: Kick-off Meeting	5/20/2014	5/20/2014				*													
4	Task 2. Preliminary TEA Case 1-4	4/1/2013	11/15/2014																	
5	Milestone 2-1: Preliminary TEA Case 1	7/1/2014	7/1/2014						*											
6	Task 3.1. Determine Optimal Flow Pattern	3/15/2013	9/15/2014																	
7	Task 3.2. Basic Process Specific. & Design	5/1/2013	11/1/2014												I					
8	Task 4.1 Pilot Plant Detailed Engineering	11/15/2014	5/1/2014																	$\overline{\top}$
9	Task 4.2 EH&S Assessment	1/1/2015	3/31/2015																	
10	Milestone 4-1: Pilot Unit design	5/15/2015	5/15/2014																*	
11	Task 5. Determine Construction Cost	5/2/2015	6/15/2015																—	
12	Milestone 5-1: Submit Design Package	6/30/2015	6/30/2015																	•
13	Milestone 5-2: Year 1 Annual Review	6/30/2015	6/30/2015																	*
14	Go/No go Decision Point		7/1/2015								•				•			•		,

Budget Period 1 Tasks

- Task 1: Project Management
- Task 2: Preliminary Techno-Economic Analysis
 - based on integration with a nominal 550 MW_e greenfield supercritical plant
- Task 3. Pilot Plant Design Optimization and Basis Design
 - Process experiments to finalize process design
 - Basic process specification and design
- Task 4. Pilot Plant Detailed Design and Engineering
 - Design a 0.5 MW_e pilot plant to capture 10 tons per day of CO₂,
 - Perform an initial Environmental, Health and Safety (EH&S) study
 - Hazard Review with NCCC
- Task 5. Determine Slipstream Unit Construction Cost
 - Develop a firm cost estimate for the slipstream unit

Preliminary Techno-Economic Analysis

- Integration with greenfield supercritical 550 MW coal fired power plant
 - Cost and Performance Baseline for Fossil Energy Plants (Black 2010) Case 12
- Analysis will follow DoE guidelines
- Work to be performed with University of California at Irvine (UCI)
- Previous TEA's showed cost savings with TDA's process with the use of lower pressure (17.5 psi) steam

Design Optimization

- Collect experimental data need to properly design pilot plant unit
- Characterize breakthrough performance and pressure drop
- Conduct process optimization in bench-scale unit to determine optimum flow/cycling logic for pilot plant
 - Plan to modify existing bench-scale unit to mimic design to be constructed

Slipstream Unit Design

- Sorbent is regenerated by direct contact with steam
- Adsorber/Regenerator operates near isothermal (adiabatically) at 40 to 160°C with about 17 psia steam
- Pressure is about at atmospheric pressure
- Adsorber/Regeneration is a multiple fixed bed unit
 - Bed switch between adsorption, regeneration, purge operations
- Slipstream unit includes adsorber/regeneration beds, heat exchangers, blower

Pilot Plant Engineering Design Package

- Pilot Plant Design with Cost to Build
- Final Process Flow Diagram, General Arrangement Sketch, Elevation Sketch
- Pilot plant electricity, heat, and water consumption, waster generation, and management ties at NCCC
- Estimated CO₂ delivery conditions: pressure, temperature, flow rate, and gas composition
- Startup, steady-state operation, and shut-down procedures
- Sorbent disposal plan
 - to be disposed of by NCCC

Budget Period 2

Budget Period 2 Schedule

Budget Period 2 Tasks

Task 6. Sorbent Production Scale-up and Quality Assurance

- Scale-up production of the sorbent
- Sorbent is alkalized alumina not exotic material
- Sorbent QA/QC testing at TDA in bench-scale unit
- Sorbent will be tested under proposed test conditions
- Evaluation of optimum steady state conditions

Task 7. Procurement and Fabrication of Modules

- Fabricate the adsorber/regeneration sorbent vessels for the pilot plant
- Procure/fabricate of heat exchangers and blower
- Skid mounted units

Budget Period 2 Tasks

Task 8. Finalize Test Plan

- Operating conditions and key parameter parametric conditions selected
- Operator training

Task 9. Pilot Plant Construction at NCCC

- Modules transported to NCCC
- Units assembled and installed
- Beds filled with sorbent
- Tie-ins with NCCC

Budget Period 3

Budget Period 3 Schedule

Budget Period 3 Tasks

Task 10. Shakedown of slipstream unit.

Series of cold then hot shakedown runs

Task 11. Operation Slipstream Unit

 Demonstrate this process in slipstream testing at the NCCC under both parametric and steady state conditions using coal derived flue gas.

Parametric Testing

- 1.5 months of parametric testing under varying operating conditions

Steady State Testing

- 2 months testing under continuous of steady state conditions at optimum conditions
- Collect data for future scale up

Decommissioning

Sorbent disposed of by NCCC after all testing

Budget Period 3 Tasks

Task 12. Post-Testing Sorbent Analysis

- Characterize physical and chemical properties of sorbent after testing
- Determine sorbent cost, useful life and replacement rate

Task 13. Slipstream Testing Data Analysis

- Review sorbent CO₂ loading and CO₂ capture under test conditions
- Recommend best operating conditions
- Update table of state
- Data from the pilot plant test will be used to develop recommendations for the next level of scale up

Task 14. Update EH&S Study

- Update based on results of slipstream test
- Review CO₂ capture process and sorbent manufacturing

Budget Period 3 Tasks

Task 15 Update Techno-Economic Analysis

- Incorporate performance data from slipstream test into TEA and update results
- Determine cost of electricity for TDA's sorbent based CO₂ capture process
- Compare to current state of the art technology
- Work performed with UCI

Final Report

- Documentation of pilot-plant results and TEA results
- Technology benefits and shortcomings
- Recommendations for future R&D addressing short-comings
- Proposed-scale up strategy for next stage of technology testing and demonstration both CO₂ capture and compression.

Summary

- Slipstream testing will assess and demonstrate technical viability of this CO₂ capture approach
- 0.5 MW slipstream testing at NCCC
- Work builds on technical success of previous work
- TDA has an ongoing relationship with an industry partner on post-combustion CO₂ capture.