

Pilot Test of a Nanoporous, Superhydrophobic Membrane Contactor Process for Post-combustion Carbon Dioxide Capture

Background

The mission of the U.S. Department of Energy Office of Fossil Energy (DOE FE) Carbon Capture Research & Development (R&D) Program, implemented through the National Energy Technology Laboratory (NETL), is to develop innovative carbon dioxide (CO_2) emissions control technologies for fossil fuel-based power plants. The Carbon Capture R&D Program portfolio of pre- and post-combustion CO_2 emissions control technologies and related CO_2 compression is focused on advancing technological options for new and existing power plants to enable cost-effective CO_2 capture for beneficial use or storage of CO_2 and ensure that the United States will continue to have access to safe, reliable, and affordable energy from fossil fuels. The DOE FE/NETL goal is to demonstrate second-generation technologies that can capture 90 percent of the CO_2 at less than \$40 per metric ton (tonne) in the 2020–2025 timeframe. DOE is also committed to extend R&D support to even more advanced transformational carbon capture technologies that will increase the competitiveness of fossil-based energy systems beyond 2035.

Post-combustion CO_2 capture technologies are applicable to conventional pulverized coal (PC)-fired power plants, where the fuel is burned with air in a boiler to produce steam that drives a turbine generator system to produce electricity. The CO_2 is exhausted in the flue gas at atmospheric pressure and a concentration of 10-15 percent by volume. Post-combustion separation and capture of CO_2 from PC-fired plants is a challenging application due to the low driving force resulting from the low pressure and dilute concentration of CO_2 in the waste stream, trace impurities in the flue gas that affect removal processes, and the parasitic energy cost associated with the capture and compression of CO_2 . Carbon capture technologies developed by the DOE program may also be applied to natural gas power plants after addressing the R&D challenges associated with the relatively low concentration of CO_2 in the flue gas, typically 3-4 percent, of natural gas plants. Hybrid approaches that synergistically combine individual technologies can result in cost-effective processes for CO_2 capture from PC-fired flue gas.

Project Description

The Gas Technology Institute (GTI), along with its partners, will continue development of a novel nanoporous, super-hydrophobic membrane contactor process for post-combustion CO₂ capture from coal-fired power plants. The polyether ether ketone (PEEK) hollow fiber contactor (HFC) process will be advanced from

NATIONAL ENERGY TECHNOLOGY LABORATORY

Albany, OR • Anchorage, AK • Morgantown, WV • Pittsburgh, PA • Sugar Land, TX

Website: www.netl.doe.gov

Customer Service: 1-800-553-7681

the **ENERGY** lab

PROJECT FACTS

Carbon Capture

CONTACTS

Michael Matuszewski

Carbon Capture Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5830 michael.matuszewski@netl.doe.gov

José D. Figueroa

Project Manager
National Energy Technology Laboratory
626 Cochrans Mill Road
P.O. Box 10940
Pittsburgh, PA 15236-0940
412-386-4966
jose.figueroa@netl.doe.gov

S. James Zhou

Principal Investigator
Gas Technology Institute
1700 South Mount Prospect Road
Des Plaines, IL 60018
847-544-3403
shaojun.zhou@gastechnology.org

PARTNERS

PoroGen Corporation Hitachi, Ltd. Trimeric Corporation Ramgen Power Systems

PROJECT DURATION

Start Date End Date 10/01/2013 09/30/2017

COST

Total Project Value

\$12,544,638

DOE/Non-DOE Share \$10,034,979/\$2,509,659

PROJECT NUMBER

FE0012829

bench-scale (research previously supported by NETL/DOE under DE-FE0004787) to pilot-scale testing. The PEEK HFC process takes advantage of both the compact nature of a membrane process and the high selectivity of an absorption process. In the new process, CO_2 -containing flue gas passes through one side of the PEEK HFC, while an advanced CO_2 selective solvent flows on the other side. The CO_2 permeates through the hollow fiber membrane pores and is chemically absorbed into the solvent. The CO_2 rich solvent is regenerated in a second PEEK HFC module operated in a reverse manner. Economic analysis based on the previous bench-scale data suggests the cost (\$/tonne of CO_2 captured) of the HFC technology is 36 percent lower than conventional amine-based technology.

In this project, pilot-scale testing will be conducted with commercial-sized 20 centimeter (cm) (8 inch) diameter modules on 1 megawatt electrical (MWe) equivalent of coal-derived flue gas. The previous bench-scale testing was conducted at a 25 kilowatt electrical equivalent scale using 10 cm (4 inch) diameter modules on coal-derived flue gas. Detailed preliminary technoeconomic and environmental, health, and safety assessments (EH&S) will be performed based on results from the previous bench-scale tests. Design and construction of the 1 MWe pilot plant will be completed and the system will subsequently be installed at a testing facility. The PEEK HFC process will be tested in the pilot-scale system under continuous steady-state operation on coal-derived flue gas for a minimum of two months, and data necessary for further process scale-up will be collected. The final techno-economic analysis—based on proposed final design configuration and operating conditions when integrated into a 550 MW power plant—and an EH&S assessment will be completed.

a minimum of two months, and (4) gather data necessary for further scale-up of the process.

Planned Activities

- Complete preliminary techno-economic and EH&S analyses.
- Design the 1 MWe CO₂ capture system.
- Develop and fabricate 8-inch commercial-sized modules.
- Determine operating conditions for the advanced aminebased solvent in the HFC.
- Construct, transport, and install the 1 MWe test system at the pilot test site.
- Measure key performance properties through parametric pilot-scale testing.
- Optimize the solvent and modules based on pilot-scale testing results.
- Conduct continuous steady-state operation for a minimum of two months.
- Complete a final techno-economic and EH&S analyses based on the pilot test results.

Accomplishments

Project awarded in September 2013.

Primary Project Goal

The primary project goal is to continue development of the PEEK HFC process through scale-up and testing at the 1 MWe pilot scale to validate its potential toward achieving DOE's Carbon Capture performance goal of 90 percent CO₂ capture rate with 95 percent CO₂ purity at a cost of \$40 per tonne of CO₂ captured by 2025.

Objectives

The project objectives are to (1) build a 1 MWe equivalent pilotscale CO₂ capture HFC system using PEEK hollow fibers in a membrane contactor, (2) conduct pilot-scale tests using actual flue gas, (3) test with continuous, steady-state operation for

Benefits

The project will advance a PEEK HFC prototype system to the 1 MWe scale with extended-duration testing on flue gas from a utility coal-fired boiler. This technology has the potential to provide a step change reduction in the cost of capturing $\rm CO_2$ from flue gas and is anticipated to meet DOE's performance goals for a retrofit technology for $\rm CO_2$ captured from PC-fired power plants. In addition to enabling cost-effective capture of $\rm CO_2$ from flue gas, the successful development of this technology will provide other broad benefits including the removal of other gas pollutants such as $\rm NO_x$ and $\rm SO_x$, the separation of $\rm CO_2$ from hydrogen in refinery streams, and the separation of $\rm CO_2$ from natural gas (natural gas sweetening).