Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Engines 10/1/11

Eric Jordan

United Technologies Professor of Advanced Materials Processing

Maurice Gell, Jeffrey Roth, Chen Jiang, Mario Bochiechio

University of Connecticut

Dr. Briggs White DOE Program Manager DE-SC0006814

Critical Industrial Participation

- Pratt Whitney and Siemens will supply bond coated superalloy substrates.
- Pratt Whitney will make CMAS glass for use in CMAS exposure testing. (and advise on composition of the glass)
- Pratt Whitney is supplying on Ph D employee student to work on the project

Microstructure & Requirements For TBCs

TBC Requirements

- Low Thermal Conductivity
- High Durability
 - > Toughness
 - > Strain Tolerance

Goals

- Reduce thermal conductivity of YSZ TBCs to 0.5 watt/m°K by use of inter-pass boundaries (IPBs).
- Increase the allowable surface temperature of the YSZ TBCs by 100°C by use of thin, high temp. surface corrosion barriers layers (CBLs).
- Improve TBC durability in CMAS environment by use of CBLs + other methods.
- Reduce the use of rare earth elements compared to other low K TBCs

Key Program Processes/Tests

- UConn Thermal Spray Facility
- Solution Precursor Plasma Spray Process (SPPS)
- TBC Cyclic Furnace Testing Facility
- Moist Environment Testing (being build for this program)

Solution Precursor Plasma Spray Process

APS

Lower Thermal Cond.

Shorter Spallation Life

Maxim thickness 1 mm ($\sqrt{}$)

EB-PVD

Higher Thermal Cond.

Longer Spallation Life

Maxim thickness 0.25

mm (**X**)

SPPS

Lower Thermal Cond.

Longer Spallation Life

Maxim thickness 2.5

Microstructure Of SPPS TBCs

Unique Features

- 3D Nano & Micrometer Porosity
- Through-Thickness Cracks
- Ultra-Fine Splats

Advantages of Solution Spray

- Vertical stress relieving Cracks- Critical when thick
- Higher Fracture Toughness
- Rapid Composition Exploration (100X)
- Structured Porosity leading to low K coatings

Effect of SPPS TBC Thickness On Durability

Substrate: CMSX-4

Bond Coat: Co210

SPPS Coating have 5X higher In Plane Toughness

Fig. 4. SEM micrographs of Vickers indentation (49 N load) sites in: (A) SPPS coating and (B) APS coating. Arrows indicate in-plane and out-of-plane cracks. (C) High-magnification SEM micrograph showing the in-plane indentation crack following a "splat" boundary in the APS coating.

Structured Porosity Lead to Lower Thermal Conductivity

Figure 3. (a) SPPS YSZ TBC with IPBs (a) and resultant, reduced thermal conductivity

IPB Microstructure

A.D. Jadhav et al. / Acta Materialia 54 (2006) 3343-3349

Formation of Inter-Pass Boundaries

UConn Thermal Spray Facility

Metco 9MB Plasma Spray System

Metco 9MC Control

9MB Plasma Gun

4MP Dual Powder Feeder

Liquid Delivery Options

Standard Inframat System

Unique High Pressure System (33 atm)

Cyclic Furnace Test Facility

Specimen Shape & Furnace Cycle

Disk-Shape Samples

Thermal Cycling Life Test

- Bond-Coat: APS NiCoCrAlY
- Top-Coat: SPPS Layered

Vast Reference Data Base

- GTD 111- GE DV
- HY 230 with Ni Co Cr Al Y and SPPS
- Rene N-5 Pt-Al BC with EB-PVD
- CMSX-4, Pt Al with EB-PVD
- CMSX-4, MCrAlY+Si, Hf-EB-PVD
- PWA 1484- APS Ni Cr Al Y -APS

10 More Types Tested

#	S1	S2	S3	S4	S5	S6	S7	S8	A1	E1
Top Coat Process	SPPS	SPPS	DVC/APS	EB-PVD						
Bond Coat Category	MCrAlY	MCrAlY	MCrAlY	Pt-Al						
Bond Coat Process	APS	APS	APS	HVOF	HVOF	LPPS	LPPS	LPPS	APS	CVD
Substrate	H230	H230	NA	H230	CMSX-4	CMSX-4	MARM509	NA	GTD-111	CMSX-4

Bond Coat Composition

	Со	Ni	Cr	Al	Y	Si	Hf
S1, S2		bal	20	10	1		
S4	23-26	Bal.	15-19	9-11	0.2-0.4		
S5, S6	Bal	32	21	8	0.5		
S7	20	Bal	18	12.5	0.6	0.4	0.25
?\$8	Bal	32	21	8	0.5		

Test Results at 1121 C 1 Hour Cycles

#	S1	S2	S3	S5	S6	S7	S8	A1	E2
Cycle Life	1140 1140* 1230 1230	573, 595* 785* 1049* 1206	697*	300* 350	245, 270* 290	220, 245*	125 140*	Ave. 300	Ave. 458
Failure % in ceramic	70%	60-75%	50%	60%	25%	50%	30%	-	-

Change of Microstructure with Thermal Cycling

Morphology of Inter-Pass Boundary

Spallation Surface Features

Ceramic "Bottom" Side

• Metal "Top" Side

Contaminants Affect Failure

Calcium, Magnesium, Aluminum Silicon= CMAS

CIMAS Infiltration of 7YSZ Thermal Barrier Coating

Field Observation of CMAS Attack

Transverse Cracks that Lead to Shedding of Topcoat

Coating Loss
Due to CMAS
Infiltration

Mercer et al. 2005

1. Loss of Strain Tolerance-Mechanical Effect

A.G. Evans, J.W. Hutchinson / Surface & Coatings Technology 201 (2007) 7905-7916

Fig. 1. Examples of delaminations in thermal barrier coatings obtained from components removed from engines subjected to CMAS penetration: (a) Sub-surface mode I delaminations in an airfoil with a TBC made by electron beam physical vapor deposition; the delaminations are within the penetrated zone [9]. (b) Delaminations at several locations within a shroud penetrated by CMAS; the TBC is 1 mm thick and deposited by air plasma spray (APS) [10].

Mechanics Modes for Loss of Strain Tolerance Developed by Hutchinson and Evans

Fig. 10. A map for deep delamination in an APS-TBC on a superalloy substrate with CMAS infiltration to depth, h/H. The mixed mode toughness parameter is, λ =0.25.

2. Many types of chemical and Phase Effects for example Y loss and destabilization of t phase $Zr\ O_2$ to Monoclinic with a destructive volume change

Fig. 4. (a) Micrograph of the interaction zone of CMAS deposit and YSZ coating after 4 h heat-treatment at 1250 °C, and (b) Raman spectra obtained from the positions marked in (a).

Proposed Work Plan

Program Plan

	7	ī		
ь	٥	ľ		
м	۰	r	۳	

	YEAR 1			YEAR 2				YEAR 3				
TASK	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1.Manage/Plan/Report												
2. SPPS of Low K TBC												
3. Test Low K TBC												
4. Fabricate Gd-Zr Layer												
5. Fab. Al-Ti Doped TBC												
6.Fab. CaSo₄ Additive												
7. CMAS Testing												
8. Moisture Testing												
9. Define Mechanisms												
10 Gradient Cyclic												
Testing												

Minimization of Thermal Conductivity Using IPBs

- Experimental Design of spray trials
- Outcome assessment by thermal conductivity calculation verified by measurement

Base Line System

Figure 6. TBC #1, a Low K SPPS YSZ TBC using IPBs and porosity

Rapid Measurement of Thermal Conductivity

Calculating Thermal Conductivity

Finite Element Mesh Generated from Micrograph Using OOF Program

Calculated Conductivity Agrees Well with Experiments

CMAS Damage Mitigation to be Implemented

Three Approaches

1. Add Gd-Zr to baseline system for higher temperature phase stability and CMAS

Figure 7. TBC system #2 with low conductivity solution plasma sprayed YSZ with IPBS and CMAS resistant high temperature tolerant Gc-Zr protective surface layer (PSL).

CMAS Resistance of GdZr

Add Metastable Al₂O₃ + to block CMAS in the YSZ layer

Figure 9. TBC system #4 has features of TBC #1-3 with calcium sulfate infiltration.

2. Addition of metastable Al + more

CMAS composition is altered to Anorthite Filed

A. Aygun et al. | Acta Materialia 55 (2007) 6734-6745

Microscopy Shows Anorthite phase is blocking

3. Infiltration of CaSO4 via a low melting eutectic of NaSo4-CaSo4-MgSo4

Analysis of Gd₂Zr₂O₇/CMAS Reaction Product

Sealant Layer Identified as Hexagonal Apatite Phase, CaGd₄(SiO₄)₃O

3. Infiltration with CaSO4 found in the field by Breau

Fig. 3 a middle section of the YSZ top coat displaying $CaSO_4$ infiltration of open porosity (suction-surface/region B, SEM, secondary electron image), b and c elementary mapping (Ca_k, S_k) proving that $CaSO_4$ is continuous within the intercolumnar pore network of the coating

Composition of the CMAS blocking Ca-Mg-Si materials found

Fig. 13 Compatibility triangles in the ternary $CaO-ZrO_2-SiO_2$ (mol%) at 1,300 °C (modified after [39, 40]) serving as a first approximation for pertinent phase assemblages at the CMAS/YSZ interface. Shaded area represents the compositional variation of the Ca-Zr-Fe-silicate which plots close to the join $CZ-SiO_2$ (given by dotted line). Abbreviations: C=CaO, $S=SiO_2$, $Z=ZrO_2$, $CZ=CaZrO_3$, $C_3S_2Z=Ca_3ZrSi_2O_9$, $C_2S_4Z=Ca_2ZrSi_4O_1$, $CS=CaSiO_3$, $CS=ZrSiO_4$. Compatibility triangles in the subsystem CaO-CZ-CS are omitted

Summary

- Project Goals are;
 - Reduce thermal conductivity 0.5 watt/m°K
 - Increase surface temperature allowable by 100C
 - Significantly improve CMAS resistance
- Inter-Pass Boundaries will be used and optimized to lower thermal conductivity
- A top layer of GdZr will be used to:
 - Allow +100°C surface temperature + high purity SPPS
 - Reduce CMAS attack
- Al-Ti Metasable solutes+ will be added to the YSZ to reduce CMAS infiltration.
- CaSO4 will be used for the first time to arrest CMAS infiltration.

Summary

- Results will be validated with CMAS testing in cyclic furnace tests and high moisture tests
- Detailed mechanism of failure will be evaluated for the test run and Modification of the TBC will be made as mechanisms suggest.
- Substrates are to be supplied by Siemens and Pratt and Whitney

Questions?