Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Engines

Eric Jordan

United Technologies Professor of Advanced Materials Processing Maurice Gell, Chen Jiang, Mario Bochiechio, Jeff Roth University of Connecticut

Briggs White Program Manager, DE-FE-0007382 10/1/12-9/30/15

Microstructure & Requirements For TBCs

TBC Applications

Goals

- Reduce the thermal conductivity of TBCs to
 0.5 watt/m-K by Optimal Porosity Structuring
- Increase the allowable surface temperature of the TBC from the current approximately 1200° C for YSZ to 1300° C. By a more stable top layer.
- Improve the durability of the TBC in the face of Contaminants (CMAS) and Moisture compared to current YSZ coatings.

Accomplishments

- SPPS Process with IPBs reduces YSZ thermal conductivity to half of normal values.
- Thermal conductivity of 0.5 W/m-°K attained.
- SPPS YSZ TBCs can replace advanced low K
 TBCs with expensive rare earth content
- Under DOE STTR program high temperature low CTE YAG TBCs rendered durable by SPPS microstructure with vertical cracks.

Presentation Outline I

- Introduction to Solution precursor Plasma Spray (SPPS)
- Importance of vertical cracks in SPPS and our exciting new STTR program results.
- Development of process parametermicrostructure (IPB) relationship
- Failure of Image analysis to determine conductivity and introduction of laser flash methods

Presentation Outline II

- Success in reducing thermal conductivity by a factor of 2.
- GdZr layer for higher temperature operation and contaminant (CMAS) resistance.
- Addition of aluminum to YSZ for improved CMAS resistance
- Addition of CaSO2 for CMAS resistance.
- Summary

Goals will be accomplished by making and Testing TBC systems Using:

- Solution Precursor Thermal Spray in UConn thermal spray facility
- TBC Testing Facility
- Moist Environment Testing (being built for this program)

Program Plan

					\downarrow							
	YEAR1			YEAR 2			YEAR 3					
TASK	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1.Manage/Plan/Report												
2. SPPS of Low K TBC												
3. Test Low K TBC												
4. Fabricate Gd-Zr Layer												
5. Fab. Al-Ti Doped TBC												
6.Fab. CaSo₄ Additive												
7. CMAS Testing												
8. Moisture Testing												
9. Define Mechanisms												
10 Gradient Cyclic Testing												

Solution Precursor Plasma Spray Process (SPPS)

SPPS Deposition: Process Flexibility

UConn Thermal Spray Facility

Liquid Delivery Options

Standard Liquid Delivery System

Unique High Pressure System (33 atm)

Cyclic Furnace Test Facility

Specimen Shape & Furnace Cycle

Disk-Shape Samples

Thermal Cycling Life Test

SPPS TBCs Have Unique Features

Microstructure Of SPPS TBCs

Unique Features

- 3D Nano & Micrometer Pororsity
- Through-Thickness Cracks
- Ultra-Fine Splats

SPPS Coating have 7X higher In Plane Toughness

Structured Planar Porosity (IPBs) Leads to Lower Thermal Conductivity

Advantages of Solution Precursor Plasma Spray

- Vertical stress relieving cracks
- Higher Fracture Toughness
- Rapid Composition Exploration (100X)
- Structured Porosity (IPBs) leading to low K coatings

Work Done under HiFunda/UConn STTR DOE Program

Patcharin Burke Program Manager

Thermal Expansion Mismatch Drive Cyclic Stresses

- TBC Stress= $E_{tbc}(\alpha_{tbc}-\alpha_{metal})(T-T_{stress\,free})/(1-v)$
- The lower the coefficient of expansion α_{tbc} higher the stress
- Many Ceramics ruled out because of low CTE that otherwise have desirable properties.
 Vertical cracks can lift this restriction.
- Example: Yttrium Aluminum Garnet (YAG)

Properties of YSZ and YAG

Material Property	YSZ	YAG			
Melting Point (°C)	2680	1950			
Maximum Operating Temperature (°C)	1200-1300	1800			
Thermal Conductivity at 1350 °C (W/mol-K)	2.0-3.0 (measured)	2.5 (extrapolated)			
Thermal Expansion Coefficient (ppm/K)	9.5×10^{-6}	** 7.5×10^{-6}			
Density (g/cc)	6.10	4.55			
Vickers Hardness	1200	1700			
		ST OF C			

Thermal Cycling Test Results (1180°C/12 hrs)

-- Failure Lives To 50% Spallation--

APS YSZ Baseline**	SPPS YAG TBCs <u>Type I</u>	SPPS YAG TBCs <u>Type II</u>
1. 72 hrs	1. 300 hrs*	1. 300 hrs*
2. 120 hrs	2. 300 hrs*	2. 300 hrs*
Intact, still r	3. 300 hrs	3. 300 hrs*

**Baseline: IN939, NiCoCrAlY Bond Coat, YSZ Top Coat

Prior Test Experience With Variety of Advanced TBCs: 60-200 hrs

Returning to SPPS YSZ

Initial SPPS Trials/Thermal Conductivity Measurements

- Taguchi DOE Spray Trials to optimize IPBs for minimum thermal conductivity (0.5 watt/m ^oK).
- Access Outcome Using Image Based Finite Element (OOF) Calculated Thermal Conductivity.
- Image Based Thermal Conductivity
 Determination (OOF) was not Reliable

Modified Plan

Use a Lesser Number of Laser Flash
 Measured Thermal Conductivity and
 Heuristically Understanding to Reach the
 Thermal Conductivity Goal of cutting in half
 the conductivity to 0.5 watt/meter- oK

Development of Heuristics Needed to Make Optimal IPBs

By Modeling and Testing

Artificial Microstructures for Insight Analyzed by OOF

Image	Porosity Mesh		Homogeneity in Ave. Hea Mesh Flux [y]		Ave. Temp Gradient [y]	Thermal Conductivity	
	0.198		0.963	0.05653	0.04	1.413	
engelikelengelik Tolkerelengelike Tolkerelengelike Tolkerelengelike Tolkerelengelike	0.198		0.974	0.04689	0.04	1.172	
	0.20		0.984	0.04016	0.04	1.004	
	0.20		1.0	0.004126	0.04	0.103	

1. Circuitous Path with as narrow as possible bridge points

Over 100 Different Spray Conducted

- 25 have had thermal conductivity measured
- 10 have been measured in LFA prior to selecting ideal substrate
- 15 have been measured with ideal substrate thickness.

Base Line Systems

Figure 6. TBC #1, a Low K SPPS YSZ TBC using IPBs and porosity

Effects of Processing Variables On IPB Formation

- Spray Distance
- Precursor Injection Method
- Precursor Feed Rate
- •Raster Scan Step Height

Formation of Inter-Pass Boundaries

Effect of Spray Distance on IPBs

Atomizing Bete with 2 mm index.

1 min cooling/15 passes. Stainless steel substrate.

4.13 cm SD

IPB 021412 A

4.44 cm SD

IPB 021412 B

4.76 cm SD

IPB 021412 C

Precursor Injection Method & IPBs

Standard 7YSZ
precursor solution. 2
mm index. 4.44 cm SD
40 s cooling/5 passes.
Stainless steel substrate.

Bete Atomizing

IPB 012512 E

Stream Injection

IPB 013112 B

Precursor Feed Rate & IPBs

Standard 7YSZ
Precursor Solution.
Stream Injection.
4.44 cm SD. Stainless
steel substrate.

#6: 38 mL/min

IPB 013112 E

#8: 106 mL/min

IPB 010512 C

Raster Scan Height & IPBs-I

Standard 7YSZ
Precursor Solution. **Bete Atomzing**.

4.44 cm SD. 40 s

cooling/5 passes.

Stainless steel substrate.

1 mm index

IPB 012512 H

2 mm index

IPB 012512 E

3 mm index

IPB 012512 B

Effect of Raster Scan On IPBs-II

Standard 7YSZ
Precursor Solution.

Stream Injection.

4.44 cm SD. 40 s
cooling/5 passes.

Stainless steel substrate.

2 mm index

IPB 013112 B

3 mm index

IPB 013112 E

4 mm index

IPB 013112 H

6 mm index

IPB 013112 K

Calculating Thermal Conductivity

A.D. Jadhav et al. | Acta Materialia 54 (2006) 3343-3349

Finite Element Mesh Generated from Micrograph Using OOF Program

Image Based (OOF) Conductivity NOT Reliable

Sample	LFA		OOF		
	Temp	Thermal Conductivity	Temp	Thermal Conductivity	Note
Stainless steel substrate	100 C	16.5			Single-layer model, 3mm substrate, 6mm piece
IPB#042412-C	150 C	0.72	150 C	0.919	Two-layer model, 3mm substrate, 6mm piece
IPB#042412-D	150 C	0.99	150 C	1.13	Two-layer model, 3mm substrate, 6mm piece
IPB#060412-G	150 C	0.55	150 C	1.216	Two-layer model, 2mm substrate, 1" disk
IPB#060412-I	150 C	0.32	150 C	1.235	Two-layer model, 3mm substrate, 1" disk

Table 1. Thermal conductivity of YSZ TBCs with interpass boundaries determined by laser flash analysis (LFA) vs. finite element calculations using SEM images and OOF software.

1. Porosity not Easily Distinguished from Other Regions

2. Is only 2-D

A, 1.625" SD 500X

5/7/2012 IPB 031612

Laser Flash Apparatus

Figure 2: Schematic of the NETZSCH LFA 447

Laser Flash Schematic

Figure: Diagram of the flash method for measuring thermal diffusivity.

Creating Low Thermal Conductivity

By Structuring the Porosity via Interpass boundaries (IPBs)

Thermal Conductivity of SPPS YSZ TBCs With IPBs Laser Flash- Twelve Specimens

Significant Program Achievement

- Reduced YSZ TBC Thermal Conductivity by >50% to 0.53 watt/m-oK
- Further Reduction Likely With IPB Optimization
- Low Thermal Conductivity Now Possible
 Without Scarce, Expensive Rare Earth Oxides

Contaminants Affect TBC Failure

Calcium, Magnesium, Aluminum
Silicon= CMAS

A 387 MW (H Machine) Engine processes about 2X10¹⁰ Kg¹ of Air/ year

- Jeffrey Bons gets fractional sticking of solids roughly 1%-10%
- 1 PPM of solids would be 20,000 Kg if it sticks even at 10%=2000 Kg it is very bad at 1% bad.
- To be a small problem you need about 1 PPB (20Kg) clean up. CMAS will be a Problem.
- ¹Chiesa, P. et al, Using Hydrogen as a Gas Turbine Fuel, J. of Engineering for Gas Turbine and Power 127, 73, 2005

CIMAS Infiltration of 7YSZ Thermal Barrier Coating

Field Observation of CMAS Attack

Transverse Cracks that Lead to Shedding of Topcoat

Coating Loss
Due to CMAS
Infiltration

Mercer et al. 2005

1. Loss of Strain Tolerance-Mechanical Effect

A.G. Evans, J.W. Hutchinson / Surface & Coatings Technology 201 (2007) 7905-7916

Fig. 1. Examples of delaminations in thermal barrier coatings obtained from components removed from engines subjected to CMAS penetration: (a) Sub-surface mode I delaminations in an airfoil with a TBC made by electron beam physical vapor deposition; the delaminations are within the penetrated zone [9]. (b) Delaminations at several locations within a shroud penetrated by CMAS; the TBC is 1 mm thick and deposited by air plasma spray (APS) [10].

Mechanics Modes for Loss of Strain Tolerance Developed by Hutchinson and Evans

Fig. 10. A map for deep delamination in an APS-TBC on a superalloy substrate with CMAS infiltration to depth, h/H. The mixed mode toughness parameter is, λ =0.25.

2. Many types of chemical and Phase Effects for example Y loss and destabilization of t phase Zr 02 to Monoclinic with a destructive volume change

Fig. 4. (a) Micrograph of the interaction zone of CMAS deposit and YSZ coating after 4h heat-treatment at 1250 °C, and (b) Raman spectra obtained from the positions marked in (a).

CMAS Damage Mitigation and Increased Temperature Capability to be Implemented

Three Approaches

1. Add Gd-Zr to baseline system for higher temperature phase stability and CMAS

Figure 7. TBC system #2 with low conductivity solution plasma sprayed YSZ with IPBS and CMAS resistant high temperature tolerant Gc-Zr protective surface layer (PSL).

Why Gd₂ Zr₂O₇?

- **Higher Temperature Phase Stability limit
 YSZ 1150 °C vs. 1550 °C For GdZr
- Half the Conductivity of YSZ
- Better CMAS Resistance

CMAS Resistance of GdZr

Analysis of Gd₂Zr₂O₇/CIMAS Reaction Product

Sealant Layer Identified as Hexagonal Apatite Phase, CaGd₄(SiO₄)₃O

Gadolinium Zirconate Sample Spray Conditions Developed at UConn

Add Metastable Al2O3 to block CMAS in the YSZ layer

Figure 9. TBC system #4 has features of TBC #1-3 with calcium sulfate infiltration.

2. Addition of metastable Al

1121 °C, 24 h SPPS YSZ + 20 mol% A l2O3 + 5 mol% TiO2 APS TYSZ SPPS TYSZ CMAS-Front Arrest TBCs Destroyed

How it Works

A. Aygun et al. / Acta Materialia 55 (2007) 6734-6745

Microscopy Shows Anorthite phase is blocking

3. Infiltration of CaSO4 via a low melting eutectic of NaSo4-CaSo4-MgSo4

3. Infiltration with CaSO4 found in the field by Braue

Fig. 3 a middle section of the YSZ top coat displaying $CaSO_4$ infiltration of open porosity (suction-surface/region B, SEM, secondary electron image), b and c elementary mapping (Ca_k, S_k) proving that $CaSO_4$ is continuous within the intercolumnar pore network of the coating

Summary & Plans

- Project Goals:
 - Reduce conductivity to 0.5 Watt/M-°K
 - Increase surface temperature allowable to 1300 °C
 - Significantly improve CMAS resistance
- Structured Porosity (IPBs) will be used and optimized to lower thermal conductivity to < 0.5 Watt/M-°K
- A top layer of GdZr will be used to:
 - Allow 1300 C surface temperature
 - Reduce CMAS attack
- Al-Ti Metasable solutes will be added to the YSZ to reduce CMAS infiltration
- CaSO₄ will be used for the first time to arrest CMAS infiltration.

Questions?