Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

Principal Investigators: Brian Gleeson, Meltem Yanar, Gerald H. Meier and Frederick S. Pettit

Graduate Student: Nate Bohna

DOE PROGRAM: DE-FOA-0000459

Patcharin "Rin" Burke, Program Manager, DOE/NETL

Project Awarded 10/01/2011 (36 months duration)

Gas Turbine Needs

- There is a need to determine the effects of relevant gases on the high-temperature degradation of gas turbine alloys and coatings.
- There also is a need to determine the effects of depositinduced degradation of the alloys and coatings in these atmospheres.

Program Objectives

Systematically assess the interplay between prototypical deposit chemistries (*i.e.*, ash and its constituents plus K_2SO_4 and FeS) and environmental oxidants (*i.e.*, O_2 , H_2O and CO_2) on the high-temperature degradation behavior of advanced TBC systems.

Combined effects of environment and deposit

Salt Deposits Found in Practice

Composition of corrosive deposits on industrial and marine turbine components. (Bornstein, JOM, 1997)

Salt	Mol.%
Na ₂ SO ₄	40-60
K ₂ SO ₄	4-9
CaSO ₄	15-30
MgSO ₄	18-30

After S.M. Mikimov and Z.I. Filipopova (1949)

H. Du, "Thermodynamic assessment of $\rm K_2SO_4$ -Na $_2SO_4$ -MgSO $_4$ -CaSO $_4$ system", Journal of Phase Equilibria, **21** (2000)

Compositions and Sources of Corrosive Salts

Concentration of SO₂ and Alkali Sulfates in Polluted Air

	Air Pollutants	Los Angeles	Beijing	Delhi	
Annua	al Average SO ₂ , ppm	0.002	0.055	0.007	
Sulfate salts	Total concentration of sulfates, μ mol./m ³	0.006-0.02	0.12-0.41	0.38-0.64	
in particulate matter in	Na ₂ SO ₄ , mol.%	48-52	12-21	32-56	
ambient air (annual	K ₂ SO ₄ , mol.%	7-11	9-28	10-16	
average values)	MgSO ₄ , mol.%	17	10-12	10-17	
. 3.300)	CaSO ₄ , mol.%	24	41-67	18-42	

References:

- Beijing: Sun et al., Atmospheric Environment, 2004, pp5991-6004; Wang et al., Atmospheric Environment, 2005, pp3771-3784.
- Los Angeles: Krudysz et al., Atmospheric Environment, 2008, pp5374-5389; Singh et al., Atmospheric Environment, 2002, pp1675-1689.
- Delhi:
 Tiwari et al., Journal of Atmospheric Chemistry, 2009, pp193-209; Datta et al, Journal of Atmospheric Chemistry, 2010, pp127-143.

High-Temperature Corrosion at 700°C in Air PWA 1484 Substrate

No Na₂SO₄ Deposit after 100h oxidation

 Δm =1.04 mg/cm² Average Metal Loss: 4 μ m With Na₂SO₄ Deposit after 5×20h (total=100h)

 Δm =1.18 mg/cm² Average Metal Loss: 6 μ m

High-Temperature Corrosion at 700°C PWA 1484 Substrate

In Air

Average Metal Loss: 6 µm

In catalyzed O₂-0.1%SO₂*

Average Metal Loss: 61 µm

*Equilibrium P_{SO_3} in O_2 -0.1%SO₂ atmosphere at 1 atm total: 7.2 x 10⁻⁴ atm

Na₂SO₄ – MgSO₄ System

High-Temperature Corrosion at 700°C in Air PWA 1484 Substrate

With Na_2SO_4 $T_m=884$ °C

Average Metal Loss: 6 µm

With Na_2SO_4 -MgSO₄ eutectic $T_{eutectic}$ =666°C

Average Metal Loss: 26 µm

Na₂SO₄-MgSO₄ eutectic (T_m=666 °C) causes accelerated attack in air at 700 °C.

Na₂SO₄-MgSO₄ Induced Corrosion at 700°C PWA 1484 Substrate

Na₂SO₄-48 mol.% MgSO₄, T_{eutectic}=666°C, 2 mg/cm²/20h, after 5×20h (total=100h)

In catalyzed O₂-0.1%SO₂

Average Metal Loss: 124 µm

The presence of SO₂/SO₃ gas significantly increases the corrosion rate of Na₂SO₄-MgSO₄ eutectic induced hot corrosion.

Effect of SO₂/SO₃ on the Na₂SO₄-Induced Hot Corrosion at 900°C

Solid Deposit Effects

Effect of CaO, Fe₂O₃, and SiO₂ Deposits on Coated and Uncoated GTD-111at 900°C in Air

Comparison of Attack of René N5

950°C / **Dry Air** / 140 hours exposure

No deposit

CaO deposit

Solid-state breakdown of protective oxides

CaO +
$$Al_2O_3 = CaAl_2O_4$$
 (m.p. 1360°C)
CaO + $Cr_2O_3 = CaCr_2O_4$ (m.p. 1022°C)

CaO destroys protectiveness of α-Al₂O₃ and Cr₂O₃.

XRD results for exposed alumina coated with CaO

As-deposited (before exposure)

After 20h exposure at 950°C followed by ultrasonic cleaning.

- Remaining CaO was cleaned.
- CaAl₄O₇ was detected.

Potential Interactions Between CaO and Al₂O₃

---- At 950°C (1273K)

Surface Images of 7YSZ TBC Specimens

950°C in dry air up to 200 hours with and without CaO deposits

Elemental mapping showing the formation of Ca zirconates

APS 7YSZ TBC – isothermally exposed for 200 hours at 950°C with CaO deposits

Calculated CaO-ZrO₂ Phase Diagram

Program Objectives

Systematically assess the interplay between prototypical deposit chemistries (*i.e.*, ash and its constituents plus K_2SO_4 and FeS) and environmental oxidants (*i.e.*, O_2 , H_2O and CO_2) on the high-temperature degradation behavior of advanced TBC systems.

Specific Objectives

- To characterize and determine the main factors governing the degradation of a state-of-the-art NiCoCrAlY bond coat and two differently processed YSZ TBCs in gaseous atmospheres that are relevant to IGCC systems.
- To characterize and determine the main factors governing the degradation of the same systems with the added complexity of the presence of a surface deposit based on coal fly ash, with particular emphasis on the fly-ash components CaO and SiO₂, as well as K_2SO_4 and FeS.

Combined effects of environment and deposit

• To establish an effective experimental procedure for assessing hightemperature, deposit-induced degradation in IGCC-relevant environments.

Systems and Environments to be Studied

- <u>Substrate</u>: 2nd generation Ni-base single crystal superalloy (René N5 or PWA 1484)
- Bond Coat: NiCoCrAIY (Ni-22Co-16Cr-13Al-0.5Y wt.%) applied by Ar-shrouded plasma spraying at PST
- TBC: Standard YSZ composition $7wt.\%Y_2O_3$ deposited by APS at thickness of ~380 μ m
 - Dense vertically cracked (DVC)
 - High purity low density (HP-LD)

An active and contributing collaborator on this project is **Praxair Surface Technologies (PST)**

TBC Systems Being Tested

High Purity/Low Density TBC

DVC TBC

YSZ Sintering Behavior

Type of VC7	YSZ Powder Compositions (wt%)									
Type of YSZ	ZrO ₂	Y ₂ O ₃	HfO ₂	Al ₂ O ₃	SiO ₂	TiO ₂	CaO	Fe ₂ O ₃	MgO	Other
High Purity	Bal	7.90	1.7	0.010	0.007	0.004	0.004	0.010	0.004	0.078
Conventional Purity	Bal	7.40	1.6	0.100	0.500	0.027	0.004	0.033	0.002	0.350

YSZ Phase Stability

Thermal history of specimens:

- Free-standing YSZ coatings sintered at 1300°C for 100 hours in laboratory air
- Rapid quench from 1300°C to 20°C
- Reheat to 150°C for 165hr in laboratory air
- Ambient cooling from 150°C to 20°C

Systems and Environments to be Studied

- Substrate: 2nd generation Ni-base single crystal superalloy (Rene N5 or PWA 1484)
- Bond Coat: NiCoCrAIY (Ni-22Co-16Cr-13AI-0.5Y wt.%) applied by Ar-shrouded plasma spraying at PST
- TBC: Standard YSZ composition 7wt.%Y₂O₃ deposited by APS at thickness of ~380 μm
 - Conventional purity, dense vertically cracked (DVC)
 - High purity low density (HP-LD)
- <u> Gaseous Atmospheres</u>: *air*
 - $air + 20\%H_2O$
 - $20\%H_2O + 70\%CO_2 900 1100$ °C

"Dry" Oxidation of Ni-Cr-Al Alloys Chromium promotes Al_2O_3 formation

Giggins and Pettit* established the following oxidation map for rolled Ni-Cr-Al alloys in 0.1atm O₂ at 1000°C.

Oxide Maps for "Dry" and "Wet" Oxidizing Conditions

Cyclic Oxidation at 700°C

PWA 1484

Dry Air

Air +
$$10\% H_2O$$

Environments and Deposits to be Studied Initially

- Gaseous Atmospheres: air
 air + 20%H₂O
 20%H₂O + 80%CO₂
 air + 20%H₂O + 0.1%SO₂ (some tests)
- Deposits: coal fly ash*
 - individual ash components: CaO and SiO₂
 - fly ash with additions of 5%FeS or 5%K₂SO₄
- *May also be synthetic fly ash: $50SiO_2 25AI_2O_3 12.5CaO 12.5Fe_2O_3$ (wt.%)
- Free-standing TBCs will be tested at 1100 and 1300°C

Flow Diagram for the Project

Year 1

- Task 1. Project Management and Planning
- Task 2. Selection of Deposits and Acquisition of Materials
- Task 3. Testing of TBCs at 900, 1000 and 1100°C without Deposits in Selected Gas Mixtures

Current Status

Year2

- Task 4.1. Testing of TBCs with Surface Deposits at 900, 1000 and 1100°C in Selected Gas Mixtures
- Task 4.2. Testing of Free Standing TBCs at 1100 and 1300°C with and without Deposits

Task 5.1.

Characterization of Exposed Specimens

Year3

- Task 4.3. Thermal Gradient Testing
- Task 5.2. Evaluation of Residual Top Coat Properties (Densification, Phase Transformation, Thermal Conductivity)
- Task 6. Analysis of Results

Chromium and 900°C Corrosion Resistance to Sulfate Deposits

Cr is known to improve the hot-corrosion resistance of an alloy

From P. Hancock, Materials Science and Engineering. 88 (1987) 303.

700°C Hot Corrosion of Commercial Alloys-Cr content

All are Ni-based superalloys that contain 8-29 wt.% Co.

700°C Hot Corrosion of Commercial Alloys-Co and Cr

At.%	Ni	Cr	Co	Al	Fe	Ti	Та	W	Мо
Haynes 214	Bal.	16.8	-	9	2.9	-	-	-	-
IN X750	Bal.	17.2	<1	1.7	8	3.0	-	-	-
IN 738	Bal.	17.5	8.2	7.1	-	4.0	0.6	0.8	1.0

700°C Hot Corrosion of MCrAIY Overlay Coatings

 O_2 -0.1%(SO_2 + SO_3), 5×20h cycles, 2 mg/cm² Na_2SO_4

Compositions of MCrAlY coating vary dramatically, e.g., 2002 US patent 6,435,830: "Exemplary" composition

26-40% Cr, 5-35% Al, 0-2%%, Y)-0%.5% (SP, %-014% ithfa waithrechala Ntean (1) bir and Co.

NiCrAly Coatings and Effect of Co Additions

Cobalt additions to NiCrAIY destabilize y' phase

Effects of Co Additions on Phase Equilibria

Calculated Ni-Co isopleth at 26Al and 20Cr, at.%

Thermal Expansion of NiCrAIY Base Alloy

Composition: Ni-26Al-20Cr-0.1Y, at.%

Thermal Expansion Behavior of NiCoCrAIY Alloys

Base composition: Ni-26Al-20Cr-0.1Y, at.%

Cyclic Oxidation Kinetics at 1150°C in Air

900°C Hot Corrosion-Co Effect

Base: Ni-26Al-20Cr-0.1Y, at.%

900°C Hot Corrosion-Co Effect

after 20h exposure

Ni-26Al-20Cr-0.4Y, $(\gamma'+\beta+\alpha)$ $\Delta m=2.5 \text{ mg/cm}^2$

Ni-18Co-26Al-20Cr-0.4Y, γ + β + σ Δm =0.8 mg/cm^2

- Preferential attack of γ' phase in NiCrAlY alloy.
- Co addition to NiCrAlY destabilizes γ' phase which, in turn, improves 900° C hot-corrosion resistance.

900°C Hot Corrosion-Starting Microstructure

Fixed Composition: Ni-26Al-20Cr-0.1Y, at.%

HT at 900°C (γ': 28%, β: 56%; α: 15%)

HT at 1150°C (γ: 13%, β: 80%; α: 7%)

Different Hot Corrosion Behavior of γ , β or γ' at 900°C

700°C Hot Corrosion-Co Effect

Base: Ni-26Al-20Cr-0.1Y, at.%

700°C Hot Corrosion-Co and $V_f(\beta)$

Base: Ni-(0, 9, 18, 36)Co-26Al-20Cr-0.1Y, at.%

Approach to Improve 700°C Hot Corrosion

700°C Hot Corrosion-Volume Fraction of β , $V_f(\beta)$

Al↓Cr↑ —

Ni-18Co-26Al-20Cr-0.1Y $V_f(\beta)=77\%$

Ni-20Co-12Al-35Cr-0.1Y $V_f(\beta)=18\%$

Program Objectives

Systematically assess the interplay between prototypical deposit chemistries (*i.e.*, ash and its constituents plus K_2SO_4 and FeS) and environmental oxidants (*i.e.*, O_2 , H_2O and CO_2) on the high-temperature degradation behavior of advanced TBC systems.

Combined effects of environment and deposit with an understanding of the chemical and microstructural aspects of the coating systems.

