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Background

® Focus on syngas based combustion in gas turbines

® Hydrogen in fuel
— Increases fuel reactivity

— Alters the flame location and dynamics compared to natural gas
combustors

= Increased volumetric flow rate
= Higher reactivity

— How does hydrogen change flame dynamics?

® Specific focus on flame flashback in gas turbines



Flashback in Gas Turbines

® Gas turbines operate in premixed combustion mode

— Fuel and compressed air mixed prior to entering combustion
chamber

® Fuel mixing carried out in premixing chamber

® Flashback

— Flame in main combustor moves inside premixing chamber

— Catastrophic consequence since premixer cannot hold high
temperature flame

® Hydrogen increases chance of flashback

— Higher reactivity causes flame to move back



Boundary Layer Flashback

® Many different flashback modes
possible

® Hydrogen-based combustion
dominated by boundary layer
flashback -

® Flow near wall is slower than

flame speed -
Wall_

Flame front

— Flame propagates upstream
— Only wall quenching arrests flame
® Unique physics affects modeling

— Turbulent boundary layer affecting
flame physics



Project Outline

® Experimental program

— Understand flashback physics

— Effect of fuel variation on flame propagation
® Large eddy simulation (LES) based modeling

— Proven to be accurate for other combustion problems

— Understand capabilities for boundary-layer flame interactions
® Interaction with industry

— OpenFOAM based model transfer

— Experimental design based on inputs from GE and Siemens Inc.



Ancillary Topics of Research

® Over three years, multiple side topics were considered
— Uncertainty quantification of chemistry models
= To understand the accuracy of flame speed results
— Adjoint-based sensitivity of chemistry models
= To determine the most critical modeling parameters
— Simulation of canonical flames and DLR combustor
= To aid Siemens Inc. in the incorporation of combustion models
— Simulation of Georgia Tech. Univ. JICF configuration

= To aid Siemens Inc. in the testing of basic combustion models
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UT Swirl Burner

® UT high-pressure swirl combustor
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Confined Model Swirl Combustor

® Single axial swirler
® Swirl number: S = 0.9

® Two types of fuel mixing:

— Fully premixed upstream of
plenum

— Fuel injection through ports
In swirler vanes, mixing in
mixing tube

plenum

combustion
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flow
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Experimental Setup
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Experimental Conditions

® Air supply at room temperature
and atmospheric pressure

® Flow rates: from 1m/s to 4m/s
average axial velocity

® ReD = 2,500 - 10,000

® Fuel: CH4/H2-mixtures, fully
premixed

® Flashback triggering: increase
In equivalence ratio

Fuel+Air &
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Triggering flashback experimentally

Method 1 Method 2
* Slow increase in fuel flow * Step change in fuel mass
rate flow
* Flashback at critical * Flashback at desired
equivalence ratio equivalence ratio
flashback upstream flan
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High-speed Imaging

® Simultaneous 3-component (stereo-)PIV and flame
luminescence imaging

comb.
AZ tube
laser Ao Velocity measurements
r sheet 5 =+ all 3 velocity components in one plane
. resolution:
E temporal: 4 kHz
field of spatial: one vgctor every 0.4mm _ _
view PIV .EE o Flame front detection based on vaporized seeding
<~  particles
o luminescene at kHz rate
— mixing _—
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Typical Flashback

® High-speed
chemiluminescence imaging

® Flashback along center body
In swirling motion

® Flame stabilizies on trailing
edges of swirler vanes

® Here: CH4-air at Re = 7200




Effect of Reynolds Number

Re = 3600 Re = 7200 Re = 14400

® All images taken at same framing rate

® Flame propagates faster at higher velocity -> structures are
not as sharp




Global flashback behavior: CH,-air flame

® High-speed
chemiluminescence imaging
(4 kHZz)

® False color table applied to
uminescence intensity

® Flashback along center body
In swirling motion due to
thicker boundary layer
compared to outer wall

® One main flame tongue
leading flashback




Global flashback behavior: H,/CH,_air flame (90%

H>by-vol.)

® Flashback again along center
body

® Flame surface more
convoluted due to non-unity
Lewis number effects

® Upstream flame propagation:
combination of large scale
flame tongues convected in
azimuthal direction with the
flow and small scale flame
cusps propagating against the
undisturbed mean flow
direction




Upstream flame propagation: Qualitative

® Mode 1 (“swirl flow flashback”) CH,
— Flame tongues are convected by the
flow in the azimuthal direction as they
propagate upstream
H,/CH,
— Found in both, CH4 and H2 flashback (90% H, by
vol.)
® Mode 2 (“channel flow flashback”)
— Flame cusps convex towards reactants
propagate upstream in the direction of
the mean undisturbed flow
f H./CH,
— Found in H2 flashback only  (90% H, by

vol.)

— Mechanism appears to be the same as
in (non-swirling) channel boundary
layer flashback




Field of view for velocity measurements
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CHg-air flame flashback
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CHj-air flame flashback
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® Upstream flame

propagation always
associated with
region of negative
axial velocity
upstream of flame

Shown here as an
example: Ren = 4,400,
¢=0.8

Simultaneous
luminescence
imaging from
orthogonal view
eliminates ambiguity
In interpreting planar
data



BL flashback: channel vs. swirling flow

‘  Channel flow
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Vorticity field

flame luminescence vorticity
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H,/CH,-air flame flashback (90% H, by vol.)

flame luminescence axial velocity

t=44.75 ms
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Center body




Effect of Reynolds number

® Flashback of CH4-air flame at
Ren = 9,200 in comparison to Ren
~ 4. 400 case shown before

® Flame surface more wrinkled as
expected, but characteristics of
upstream flame propagation
unaltered

u, [m/s]

® Suggests that a lot can be
learned from lower Reynolds
number cases
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Large Eddy Simulation of Flashback

® Goal of LES two-fold

— Understand current capabilities

— Develop models in an open source framework for easy transfer
to industry

® Flamelet-based modeling
— Flow conditions considered fall in the flamelet regime
— Progress-variable/enthalpy formulation

® OpenFOAM solvers for combustion

— Open source CFD plaftorm

— Adapted for LES and turbulent combustion



Large Eddy Simulation of UT Swirl Burner

® OpenFOAM based simulation
— Allows transfer to industry without additional legal issues
— Integration of models developed in this work

® CAD geometry from experimental group used directly

— Critical for transfer to industrial simulations

\ 4



OpenFOAM for LES

® Base software not suitable for high-fidelity LES
— High numerical diffusion

— Lack of robust numerical algorithms for low-Mach number flows

® New OpenFOAM module for combustion developed
— Incorporates pressure-based low-Mach number solver
= Robust for high density ratio flows
— Improved temporal accuracy
— Includes flamelet-type combustion models

= PDF/quadrature approaches also implemented
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® Unstructured gri
— Based on CAD file
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Computational Domain
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— Clustered gri
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Inert Flow Field Validation
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Mean velocity components for experimental results (points) and LES results (lines)




High-speed Velocity Streaks

® Streaks of high axial and azimuthal
velocity forms in the mixing tube

® Flame flashes back in the low-
velocity regime

® Turbulence breakdown affects
streak alignment




Swirl Structure

® Mixing tube

— Swirl structure
determined by vane
angles

— Small differences due
to turbulence
development

= Leads to misalignment
with experimental
data

U_axial (m/s)




Flame Description

® Flamelet-based model
— Flame described using progress variable

— Only valid for constant equivalence-ratio systems

® Flame flashback induced using step-change in equivalence
ratio

— Implies a change in local fuel/air composition
— Requires a mixture-fraction based description
® Mixture-fraction/Progress variable approach
— Based on an ensemble of premixed laminar flamelets

— Neglects interaction between different flamelets

= Weak stratification assumption



Achieving Stable Anchored Flame

® Chosen equivalence ratio used to
stabilize the flame

® Flame surface initialized as a flat
flame at arbitrary height inside
chamber

— Allowed to stabilize and reach
statistical stationarity

— Flame found to travel close to
premixing tube

— Frequent entry into premixing tube




Numerical Flashback

® Step-change in
equivalence ratio at the
Inlet

— Finite time to reach the
flame front

— Shortest time through high-
velocity streaks

— Imposes a fuel gradient in
the flashback region




Flame Behavior in Mixing Tube

® Flame propagation along inner
wall

® Flame speed trend with Re
consistent with experiments

— Higher Re leads to higher flashback
speeds

® |ncreased laminarization

— Partly due to filter width efferte




Flashback Physics from Simulations

® \Weak reverse flow ahead of
flame

— But larger negative velocity
behind flame compared to
experiments

U axial (m/s)

w A

® Reverse flow not essential for
flashback

— Flashback speed is roughly
equal to that in experiments

o

'I_'M'i'w'lﬂuufmml

— Predicted for different fuel
compositions and Re



Hydrogen-enhanced Flames

® Higher hydrogen content increases
flame wrinkling

— Larger density ratios

® Flame front radially distributed
compared to experiments

— Possibly from inaccurate heat loss
model

® Reverse flow is still not critical in the
simulations

— Discrepancy noticed in other channel
flashback simulations as well



Final Steps

® Direct quantitative comparison of simulations and
experiments

— Preliminary analysis completed; Students working on final set of
high-resolution simulations

® High pressure data
— Part of second project
— Rig built and tested; Initial runs complete

— Simulations are being carried out blind for comparisons



Conclusions

® Boundary layer flashback exhibits complex dynamics
— Flame propagation mode depends on fuel composition
— Strong influence of swirl flow momentum
— Propagation along weaker boundary layer

= Inner wall boundary layer in the UT swirler configuration

® Open source LES solver developed and tested for complex
reacting flows

— Ready to be transferred to industry
— Collaboration with Siemens Inc. in progress
® LES predicts trends but not quantitatively accurate

— Lack of reverse flow could be tied to low-Mach number assumptions



Outstanding Issues

® What is the role of near-wall flow on flame propagation
— |s reversed flow important?

— How does anisotropy at the wall affect propagation?

® Effect of pressure

— Are pressure gradients near wall important for accelerating flame
propagation?

® What is LES of flashback?
— LES provides an unsteady transient simulation
— However, is this directly comparable to experiments?

— What does a single realization of experiment and LES mean?



