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Challenges in Flashback Simulation

¢ Unique physics

= Flame propagation in a turbulent

boundary layer _
= Non-uniform equivalence ratio >
¢ Coupled to upstream processes Flame front
4__
= Fuel-injection and mixing affects fuel Wall

stratification

¢ Input uncertainties

= Chemistry mechanism and boundary
condition uncertainties could affect
flashback speed + initiation
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Operating Hypotheses

¢ Both Large eddy simulation (LES) and Reynolds-averaged Navier-
Stokes (RANS) approaches necessary

® Models developed should be applicable in complex geometries

= Restricts model formulation

® Rigorous validation procedures necessary

= |Individual processes (flame-wall interaction, jet mixing etc.)
need to be validated

= |nteraction of processes also need to be tested

® |t is not sufficient to produce predictions, but also uncertainty in
the predictions

= A statistical framework for uncertainty evaluation needed
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Target-based Flashback Modeling

e UT high-pressure swirl combustor
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Hierarchical Validation Pyramid

TNF Lifted Flame in DNS of Jet in DNS of Flame-wall Darmstadt Stratified
Vitiated Coflow Crossflow Interaction Burner

¢ | evel 1 - Fundamental data from legacy expts. and direct
numerical simulations (DNS)

Level Il

Level Il

Level |

e | evel 2 - UT re-configurable experiments designed for validation

e | evel 3 - UT target system experiments
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Topics of Discussion

¢ (Quadrature approach (DQMOM) for modeling combustion of jets-
in-crossflow

= Formulation of DQMOM approach

= |mplementation in OpenFOAM general purpose CFD solver

¢ Analysis of flame-wall interaction using direct numerical
simulation (DNS) data

e Bayesian approach for uncertainty quantification
= Formulation and UQ of syngas chemistry mechanisms

® Preliminary studies of UT swirl burner

= Experimental and LES studies
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Direct Quadrature Method of Moments
(DQMOM)
Approach for LES/RANS of Turbulent
Combustion
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PAMOM Basics

¢ Probability density function (PDF) approach

= Solve a high-dimensional transport equation for joint-PDF of gas
phase scalars

® |n LES calculations, the filtered moments of the composition
vector are required

3 = / G(C)Pe(C: x, £)dC

¢ PDF transport equation

Chemical Source

0 s 2] - [ - 5.
Conditional
Diffusion

= Condition diffusion requires a model for scalar dissipation rate
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Modeling POF Transport Equation

¢ PDF transport equation

Chemical Source

%]; ' aij Pujle| = a?a PMaC a?a PS5l
Conditional
Diffusion

¢ PDF equation is high-dimensional

= |f N species present in chemistry, N+5 dimensions

e | agrangian Monte-Carlo approach typically used
= Stochastic in nature
= Numerical stability is highly flow dependent
= Difficult to maintain numerical accuracy in complex geometries

= Highly expensive for realistic flow configurations
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Eulerian PAMOM Approach

e DQMOM uses dirac-delta functions to
discretize the PDF

¢ Each delta-function characterized by a
weight and abscissa

= Transport equations for these two
variables can be formulated

¢ Similar in structure to scalar transport
equations
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Ilmplementation in OpenFOAM

@
e Eulerian PDF approach
= Easy transition to commercial and
open source codes o A —
e OpenFOAM open source platform + mvComvect ione>fvabiviphi, G10i])
- fvm::laplacian(turbulence->muEff(), G1[i])
= C++ libraries for solving partial homiotrys RR(D)
. . . + chemistryl. i
differential equations

= Arbitrary geometries handled
using unstructured grids

1
?0 ' Weights
= MPIl-based parallelization + avConvection sfvabiviphi,w)

- fvm::laplacian(turbulence->muEff(),wl)

);

Wednesday, October 3, 12



Simulation of Jet-in-Crossflow Configuration

¢ Experiment from Lieuwen’s group
(GaTech Univ.)

= Methane/hydrogen mixture (300K)
= Vitiated air crossflow (1852 K)

Fuel

e Simulation details

e 1.7 million control volumes =

0.02

e 7-species Linstedt mechanism | |

-0.02

Yo

v
\\\\\
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Species Distribution
¢ DOMOM results compared with no-combustion model simulation

= DQMOM predicts lower combustion rates

= Finite-rate mixing slows reactions
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UT JICF Configurations

@
® Objective is to develop joint
velocity/scalar statistics for
methane/hydrogen fuel )\ R
mixtures mee | U -
¢ 3-component PIV
measurements completed
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DNS-based Analysis of Flame Propagation
Through Turbulent Boundary Layers
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Flame Propagation

¢ Premixed flame propagation generally studied in free-stream or
shear layer turbulence

e Wall-bhounded flows

= Exhibit significant flow anisotropy
= Turbulence modified through flame propagation

- Similar to shock-turbulence interaction

X (mm)
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Sandia Flashback NS

® Petascale simulation of flame
flashback in a turbulent channel
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A Priori Results

¢ DNS-based analysis of unresolved kinetic energy
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Uncertainty Quantification in Gas
Turbine Simulations

Application to Chemistry Model
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CFD and Predictions

® The goal of CFD is to issue predictions at future conditions
= No corroborating data exist

¢ CFD models are highly imperfect
= \arying degree of error

® How reliable are the predictions?

= Measure of prediction error is necessary
= Termed as prediction uncertainty

= Field of uncertainty quantification (UQ)

Wednesday, October 3, 12



Uncertainty Quantification (UQ) Basics

¢ Models are necessarily imperfect
¢ Measurements designed to calibrate models also contain errors

¢ Two forms of errors
= Model form error arising from specific model formulation
- Example: Specific set of reactions to describe fuel combustion
= Parametric uncertainty

- Reaction rates cannot be determined to arbitrary precision

e UQ theory

= Uses experiments (data) to develop a probabilistic estimate of
the parameters and model form errors
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Bayesian Theory of UQ

¢ Based on assigning probabilistic values
for parameters

= No single value but a likely range of GO

¢ Uncertainty in knowledge expressed
through PDFs

= For instance, PDF of parameters

¢ Use Bayes’ theorem to utilize data for

1.7 1.8 1.9 2 2.1 2.2

finding these PDFs E < 10°
. ] PDF of activation energy obtained by using
= As more data is available, PDFs many different experiments
change

= Reflects a change in our knowledge of
the system
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Bayesian Learning or Bayesian Inference

¢ The basis of Bayesian inference is the Bayes theorem
e Consider two events A and B

¢ Bayes’ theorem relates the conditional PDFs of the two events to
the marginal PDFs

Likilihood
/ Prior
P(A|B) = = ]gl(gg)‘)P(A)
-~
Posterior T

Probability of Evidence
= For example, A could be the activation energy, and B will be
experimental data

= The Bayes’ theorem then updates the activation energy given
the experimental data
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Bayesian Learning Process

0.5 250
0.4 > 200
0.3¢ . é 150
: Bayesian 2
A 27100
”|Black-box | £
| A = 50 q 1
Prior PDF 3 OC¢1 e 0.2
Experimental
Data

Wednesday, October 3, 12



Application to Syngas Chewmistry Mechanism

e Several mechanisms used as starting point

e Calibrations carried out using experimental data

= >10 parameters jointly calibrated

= PDFs are joint distribution of all variables
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Prediction Uncertainty

e Calibration using 10 atm. data

‘0w 100
- = H,:CO=25:75 _
= Prediction at 20 atm. T s
® PDFs used to develop prediction § N
uncertainty o | ==
() ~ X
e Note that experiments also g H,:CO = 5:95
contain errors TS

84 06 08 1 12
¢ |nability to match experiments Equivalence Ratio

= Points to model failure

= [ ack of appropriate experiments
needed for calibration

= |nformation used to design future
experiments
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UT Swirl Burner Studies
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Swirl Burner Design

Combustor

section
Premix section

(Quartz tube) \ >

'/ 5

Swirl vanes
with fuel
injection
ports

6”

Flow
conditioning

Quartz premix
section

Swirl vanes
with fuel
injection ports

Fueling tube
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Burner Operation

=
[l [ N N N N § N N § N | §

Lean-premixed (¢ = 0.6)
methane-air swirl flame
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and Operation

CFD for Burner Design
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= Effect of hydrogen addition




Preliminary Results

¢ Hydrogen Jet: 200 m/s
® Grossflow at 10 m/s

¢ 6 injection holes/vane
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Status

® JICF studies

= UT experiments ramping up; Initial data being analyzed
= UT simulations being performed
= OpenFOAM implementation being transferred to Siemens

- (Open to other industrial partners)
e UQ Computations
= Chemistry UQ completed
= Transition to full CFD computations
® UT swirl burner

= Design, fabrication, and initial runs complete

= Experimental conditions being optimized using LES computations
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