Joint Computational/Experimental Study of Flashback in Hydrogen-rich Gas Turbines

Venkat Raman (PI) Noel Clemens (co-I)

The University of Texas at Austin

Challenges in Simulating Gas Turbines

Lack of appropriate physical models

Unsteady dynamics, wall-flame interactions, multiple combustion regimes

Less than ideal validation data

- Diagnostic fidelity reduces with flow complexity
 - High-pressure confined environment

Geometric complexity

- Vanes, swozzles, etc.
- Unstructured grid systems are indispensible

Uncertainty

Boundary conditions, chemistry, operating conditions

Operating Hypotheses

- Combined LES and RANS capabilities
 - → LES is not the solution to all problems
 - RANS has lot of unrealized potential
- Experiments in the absence of modeling guidance is not useful for advancing predictive capability
 - Models should capture sensitivity to parameters in a real gas turbine
 - Experiments should be designed to reproduce this sensitivity
 - Non-trivial exercise
 - Current simulation approaches cannot provide this guidance

Objectives

- Integrate high and low fidelity computational models (LES, RANS) with experiments
 - To capture unsteady dynamics in gas turbine combustors
 - Provide predictive insight in the design process

- Target-based model development
 - UT high-pressure combustor as the overarching simulation

Target System

• UT high-pressure swirl combustor

Key Issues

Fuel injection, mixing, and combustion

- Crossflow jet configuration
- Flame stabilization and mixing issues

Flashback dynamics

- Flame propagation in turbulent core flow
- Flame-wall interaction and boundary layer modulation

Key Computational Issues

LES-based modeling

- Combustion models in complex geometries
- Flame-wall interaction modeling
- Jet-in-crossflow anomalous behavior

Predictive uncertainty in RANS

Highly parameter dependent turbulence models

Technology transfer

→ A common platform to share advances with industry

Hierarchical Validation Pyramid

- Level 1 Fundamental data from legacy expts. and direct numerical simulations (DNS)
- Level 2 UT re-configurable experiments designed for validation
- Level 3 UT target system experiments

Research Plan

UT high-pressure swirl combustor experiments

Validation driven experiments

LES model development

- Eulerian probability density function (PDF) approach for complex geometries
- Transported-equation based dissipation rate model

RANS accuracy improvement

- Calibration as a mathematical approach
- Propagating uncertainties in chemistry and boundary conditions

Open source model transfer

OpenFOAM based model implementation

Hierarchical Validation Pyramid

- Level 1 Fundamental data from legacy expts. and direct numerical simulations (DNS)
- Level 2 UT re-configurable experiments designed for validation
- Level 3 UT target system experiments

Pitched Jets in Crossflow

Variations in jet angle, fuel composition

Figure 12: Jet flames in crossflow with different levels of premixing. The fuel is 70% CH4 + 30% H2. (a) non-premixed, (b) jet fluid diluted by 25% (volume basis) with air, and (c) jet fluid diluted by 50% with air.

LES of JICF

Simultaneous PLIF +PIV

Flashback Dynamics

- Fuel injection through swirl vanes
- Flashback induced through back-pressure valve
- Optical access for simultaneous velocity/scalar measurements

Modeling Approach

- Probability density function (PDF) approach
 - Solve a high-dimensional transport equation for joint-PDF of gas phase scalars
- In LES calculations, the filtered moments of the composition vector are required

$$\widetilde{\boldsymbol{\phi}} = \int \mathcal{G}(\boldsymbol{\zeta}) P_{\xi}(\boldsymbol{\zeta}; \mathbf{x}, t) d\boldsymbol{\zeta}$$

PDF transport equation

$$\frac{\partial P}{\partial t} + \frac{\partial}{\partial x_j} \left[\widetilde{Pu_j | \zeta} \right] = -\frac{\partial}{\partial \zeta_\alpha} \left[\widetilde{P\mathcal{M}_\alpha | \zeta} \right] - \frac{\partial}{\partial \zeta_\alpha} \left[PS_\alpha \right]$$
 Conditional Diffusion

Condition diffusion requires a model for scalar dissipation rate

Nonequilibrium Dissipation Rate Model

- Currently used dissipation rate models rely on equilibrium assumption
 - Highly restrictive
 - Invalid even in homogeneous isotropic turbulence
- Transport-equation based dissipation model
 - Incorporates spatial transport of scalar energy
 - Allows scalar and turbulence scales to be decoupled

Flame-Wall Interaction

- Propagation of flames in a boundary layer
 - Modulates the turbulent boundary layer
 - Alters turbulent energy transport and dissipation
- Similar to unstart propagation in scramjets
 - Propagation of density/ pressure fronts through a separated boundary layer
- DNS-based analysis of turbulent flux models

DNS of J. Chen (Sandia)

Flame-Wall Interaction

- Propagation of flames in a boundary layer
 - Modulates the turbulent boundary layer
 - Alters turbulent energy transport and dissipation
- Similar to unstart propagation in scramjets
 - Propagation of density/ pressure fronts through a separated boundary layer
- DNS-based analysis of turbulent flux models

DNS of J. Chen (Sandia)

Modeling PDF Transport Equation

PDF transport equation

$$\frac{\partial P}{\partial t} + \frac{\partial}{\partial x_j} \left[P\widetilde{u_j | \boldsymbol{\zeta}} \right] = -\frac{\partial}{\partial \zeta_\alpha} \left[P\widetilde{\mathcal{M}_\alpha | \boldsymbol{\zeta}} \right] - \frac{\partial}{\partial \zeta_\alpha} \left[PS_\alpha \right]$$
Conditional Diffusion

Chemical Source

- PDF equation is high-dimensional
 - → If N species present in chemistry, N+5 dimensions
- Lagrangian Monte-Carlo approach typically used
 - Stochastic in nature
 - Numerical stability is highly flow dependent
 - Difficult to maintain numerical accuracy in complex geometries
 - Highly expensive for realistic flow configurations

Direct-Quadrature Method of Moments (DQMOM)

- DQMOM uses dirac-delta functions to discretize the PDF
- Each delta-function characterized by a weight and abscissa
 - Transport equations for these two variables can be formulated
- Similar in structure to scalar transport equations

$$\frac{\partial w_n}{\partial t} + \overline{U_i} \frac{\partial w_n}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\Gamma \frac{\partial w_n}{\partial x_i} \right) + a_n$$

P(Z)

Test case: 2-D shear layer

- Flow conditions similar to the experiment of Mungal and Dimotakis (1984)
- Two streams at velocity of 8.8 m/s and 22 m/s
- Single step chemistry formulated using progress-variable and mixture fraction

$$S(Y,Z) = k \left(\frac{Z}{Z_{st}} - Y\right) \left(\frac{1 - Z}{1 - Z_{st}} - Y\right)$$

- Test cases performed
 - → LES simulation of first moment of Y,Z and second moment of Z
 - Lagrangian simulations with IEM mixing model
 - → DQMOM simulation with IEM mixing model and 2-peak formulation
 - Different functional form for rate constants

Test results

Progress variable mean

Progress variable variance

Solid - DQMOM: Dash-dotted - Lagrangian: Dashed - No subgrid model

Decision Making, Risks, and CFD

- CFD is a vital tool for understanding practical engineering devices
- CFD models are also highly unreliable
 - Modeling is as much an art as science
- Can we rely on CFD results to make critical decisions?

DOE Predictive Science Academic Alliance Program

- PECOS Center at UT Austin focuses on estimating uncertainties
- Quantifying uncertainties
 - Use experiments and models to determine simulation error bars

Uncertainty Quantification (UQ)

- Since models will always incur errors, the best strategy is to quantify the errors
 - In a simple sense, compute error bars for the solution
 - More broadly, CFD results are no longer deterministic "plots" but probabilistic distributions
- The quantifiable error in the computations is termed uncertainty
 - Expressed in terms of confidence in results, which are also computed

RANS Models for Scalar Flux

RANS scalar transport equation

$$\frac{\partial \overline{\rho} \widetilde{\phi}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_{j} \widetilde{\phi}}{\partial x_{j}} - \frac{\partial}{\partial x_{j}} \left(\overline{\rho} D \frac{\partial \widetilde{\phi}}{\partial x_{j}} \right) = -\frac{\partial \overline{\rho} u_{j}' \phi'}{\partial x_{j}} + \underbrace{\widetilde{S}(\phi)}_{\text{Chemical source term}}_{\text{Scalar flux}}$$

- Closures for the scalar flux needed
- Several models considered
 - E.g., Combination generalized gradient diffusion model

$$\widetilde{u_i'\phi'} = -\tau_T \left(C_{\phi 1} \widetilde{u_i'u_j'} + C_{\phi 2} \frac{\widetilde{u_i'u_k'} \, \widetilde{u_k'u_j'}}{k} \right) \frac{\partial \widetilde{\phi}}{\partial x_j}$$

ightharpoonup Model coefficients ($C_{\phi 1}, C_{\phi 2}$) need to be determined

Probabilistic Description of RANS Model Constants

Technology Transfer Using OpenFOAM

- Open source software
- Large-scale code modification
 - Numerics changed to accommodate LES computations
 - New flow solvers for turbulent combustion problems
 - Arbitrary chemistry inclusion with chemkincompatible interface

UT Gas Turbine Program

LES/RANS combined modeling approach

- LES for unsteady dynamics
- Calibration-based RANS for parametric studies

Well-characterized experimental setup

- Simultaneous PIV/PLIF measurements under high pressure conditions
- Pitched jets in crossflow with varying fuel compositions

Open source technology transfer

OpenFOAM based transfer of models