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Challenges in Simulating Gas Turbines

e | ack of appropriate physical models

= Unsteady dynamics, wall-flame interactions, multiple
combustion regimes

® Less than ideal validation data
= Diagnostic fidelity reduces with flow complexity
- High-pressure confined environment
¢ Geometric complexity
= \/anes, swozzles, efc.
= Unstructured grid systems are indispensible
¢ Uncertainty

= Boundary conditions, chemistry, operating conditions
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Operating Hypotheses

¢ Combined LES and RANS capabilities

= LES is not the solution to all problems

= RANS has lot of unrealized potential

¢ Experiments in the absence of modeling guidance is not useful
for advancing predictive capability

= Models should capture sensitivity to parameters in a real gas
turbine

= Experiments should be designed to reproduce this sensitivity
- Non-trivial exercise

- Current simulation approaches cannot provide this guidance
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Objectives

¢ [ntegrate high and low fidelity computational models (LES, RANS)
with experiments

= To capture unsteady dynamics in gas turbine combustors

= Provide predictive insight in the design process

¢ Target-based model development

= UT high-pressure combustor as the overarching simulation
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Target System

e UT high-pressure swirl combustor
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Key Issues

¢ Fuel injection, mixing, and combustion

= Crossflow jet configuration

= Flame stabilization and mixing issues

¢ Flashback dynamics

= Flame propagation in turbulent core flow

= Flame-wall interaction and boundary layer modulation
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Key Computational Issues

¢ | ES-based modeling

= Combustion models in complex geometries

= Flame-wall interaction modeling

= Jet-in-crossflow anomalous behavior
® Predictive uncertainty in RANS

= Highly parameter dependent turbulence models
® Technology transfer

= A common platform to share advances with industry
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Hierarchical Validation Pyramid

Level 1l

Level Il

TNF Lifted Flame in DNS of Jet in DNS of Flame-wall Darmstadt Stratified Level |
Vitiated Coflow Crossflow Interaction Burner

¢ | evel 1 - Fundamental data from legacy expts. and direct
numerical simulations (DNS)

e | evel 2 - UT re-configurable experiments designed for validation

e | evel 3 - UT target system experiments
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Research Plan

e UT high-pressure swirl combustor experiments
= Validation driven experiments

¢ LES model development

= Eulerian probability density function (PDF) approach for
complex geometries

= Transported-equation based dissipation rate model
¢ RANS accuracy improvement

= Calibration as a mathematical approach

= Propagating uncertainties in chemistry and boundary conditions
¢ Open source model transfer

= OpenFOAM based model implementation
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Pitched Jets in Crossflow
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Figure 12: Jet flames in crossflow with different levels of premixing. The fuel is 70% CH4 +
30% H2. (a) non-premixed, (b) jet fluid diluted by 25% (volume basis) with air, and (c) jet flui

diluted by 50% with air.
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Flashback Dynawics

¢ Fuel injection through swirl
vanes

¢ Flashback induced through
back-pressure valve

e Optical access for
simultaneous velocity/scalar
measurements
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Modeling Approach

¢ Probability density function (PDF) approach

= Solve a high-dimensional transport equation for joint-PDF of gas
phase scalars

® |n LES calculations, the filtered moments of the composition
vector are required

3 = / G(C)Pe(Cix, t)dC

¢ PDF transport equation

Chemical Source

(?9]; ' aij Pusl¢| = aia PM.C a?a Pl
Conditional
Diffusion

= Condition diffusion requires a model for scalar dissipation rate
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Nonequilibrium Rissipation Rate Model
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Flame-Wall Interaction

® Propagation of flames in a
boundary layer

= Modulates the turbulent
boundary layer

= Alters turbulent energy
transport and dissipation PIV data LES « Shock motion . M T

i

e Similar to unstart propagation
In scramjets

= Propagation of density/
pressure fronts through a
separated boundary

layer =

Inflow

e DNS-based analysis of

turbulent flux models
DNS of J. Chen (Sandia)
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Modeling POF Transport Equation

¢ PDF transport equation

Chemical Source

(?9]; ' aij Pusl¢| = a(za PM.C a?a PS5l
Conditional
Diffusion

® PDF equation is high-dimensional

= |f N species present in chemistry, N+5 dimensions

e | agrangian Monte-Carlo approach typically used
= Stochastic in nature
= Numerical stability is highly flow dependent
= Difficult to maintain numerical accuracy in complex geometries

= Highly expensive for realistic flow configurations
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Direct-Quadrature Method of Mowments (PQAMOM)

e DQMOM uses dirac-delta functions to

discretize the PDF
e Each delta-function characterized bya "*
weight and abscissa
= Transport equations for these two yi
variables can be formulated —
¢ Similar in structure to scalar transport Wr
equations v

ow, 0w, 0 ow,,
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Test case : 2-0 shear layer
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¢ Flow conditions similar to the experiment of Mungal and Dimotakis (1984)
e Two streams at velocity of 8.8 m/s and 22 m/s
e Single step chemistry formulated using progress-variable and mixture fraction

S(Y,Z) =k (ZZt —Y> <11__ZZSt —Y)

o Test cases performed
= |ES simulation of first moment of Y,Z and second moment of Z
= [ agrangian simulations with IEM mixing model
= DQMOM simulation with IEM mixing model and 2-peak formulation
= Different functional form for rate constants
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Test results
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Decision Making, Risks, and CFD

DOE interest

e GFD is a vital tool for understanding
practical engineering devices

¢ GCFD models are also highly unreliable

= Modeling is as much an art as science

e Can we rely on GFD results to make
critical decisions?

Our
interest
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DOE Predictive Science Acadewic Alliance Program

e PECOS Center at UT Austin focuses on estimating uncertainties

¢ Quantifying uncertainties

= Use experiments and models to determine simulation error bars

Uncertainty of low-temperature n-heptane
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Uncertainty Quantification (UQ)

® Since models will always incur errors,
the best strategy is to quantify the

errors
= In a simple sense, compute error o mone
bars for the solution 1F

= More broadly, CFD results are no
longer deterministic “plots™ but
probabilistic distributions

® The quantifiable error in the o 50 0 130

Data point
computations is termed uncertainty

= Expressed in terms of confidence in
results, which are also computed
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RANS Models for Scalar Flux

e RANS scalar transport equation

op6  pizo _ 0 (06
ot = Or;  Oxy -

Chemical source term

apu;¢f

Scalar flux

= (Closures for the scalar flux needed

e Several models considered

= E.g., Combination generalized gradient diffusion model

——~— T

— — wal w9
w, ¢ = —T1r (C’Qﬂu;u; + Cgo— kk u ]) —aj
J

= Model coefficients (C'y;, Cyo ) Need to be determined

Wednesday, November 2, 11



Probabilistic Description of RANS Model Constants
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¢ Open source software

e | arge-scale code
modification

= Numerics changed to
accommodate LES

computations

= New flow solvers for
turbulent combustion
problems

= Arbitrary chemistry
inclusion with chemkin-
compatible interface
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UT Gas Turbine Program

¢ LES/RANS combined modeling approach

= | ES for unsteady dynamics

= Calibration-based RANS for parametric studies
e Well-characterized experimental setup

= Simultaneous PIV/PLIF measurements under high pressure
conditions

= Pitched jets in crossflow with varying fuel compositions
® (Open source technology transfer

= OpenFOAM based transfer of models
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