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PSU Completed Milestones:
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Measure Endwall Overall Effectiveness

Completed Q8

Measure Endwall Overall Effectiveness with Deposits

Completed Q10

Measure Endwall Overall Effectiveness with TBC

Completed Q11

Computational Predictions of Conjugate Heat Transfer,
with and without TBC

Completed Q12

Measure Overall Effectiveness with Optimized Endwall
Design (Contoured)

Completed Q13

Measure Contoured Endwall Overall Effectiveness with
TBC

Completed Q14

Measure Velocity Fields with and without Film Cooling

Completed Q14

Computational Predictions of Contoured Endwall
Conjugate Heat transfer, with and without TBC

Completed Q16

Supplementary Tasks (not in original proposal)




Better understanding of endwall cooling and its interaction
with endwall contouring is needed to predict performance
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Conjugate heat transfer measurements and predictions
of flat and contoured endwalls will be presented
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Matching the geometry, Biot number and h_./h. to engine
conditions allows direct measurement of metal temperature
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Mainstream flow is heated, and coolant flow is chilled

to maximize driving AT = T_.-T_ ; ermal
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Thermocouples were installed on the endwall surface
under the TBC to measure ¢, along two streamlines
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The measurements of overall effectiveness demonstrated
the key features of film cooling and internal impingement
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Increasing blowing ratio improved average ¢ for
impingement more than for film cooling
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Conjugate RANS simulations used the SST k-w model and
an unstructured computational grid with wall prism layers
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There is good overall agreement between the measured

and predicted ¢, except for the attachment of the jets
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CFD temperature results show the three-dimensional
conduction and steep gradients within the endwall
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We simulated deposition with wax, matching the Stokes
number, Thermal Scaling Parameter and conductivity ratio
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The cooling systems mitigated some deposition, but
effectiveness was reduced everywhere in the passage
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We observed clear areas due to the film cooling jets, and

deposition on the blade from the passage vortex
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Roughness from the deposition degrades the cooling
performance, resulting in higher endwall temperatures
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Although the Nu peaks at H/D = 2.9, the area averaged ¢,
with film and impingement, is relatively insensitive to H/D
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Contouring reduces effectiveness for impingement only,
since h. decreases and h_, increases from the flat endwall
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Overall effectiveness does not change much between
the flat and contoured endwall with film cooling

0.4

F|Im Coollng OnIy -

Film Cooling

Only, M = 2.0 0.3 I
O 0.2 .
0.5
01" £ :
04 .
03h | 0.2 0.0 0.2 0.4 0.6 0.8 1.0
b | -===-Flat, M, = 0.6 X/Cax
-~ Flat, M,,, = 1.0
0.2 -
~-U-Flat, M,,, = 2.0
’+Contoured M, =0.6
0.1 1 —Contoured, M, =1.0
{ —®Contoured, M_,, = 2.0 PE"" ST“E
/\
0.0 ‘ ‘ ‘ ‘ ‘ ©Jc

-0.2‘ | 00 | 02 | 04 | 06 | 08 | ‘1.0
19 x/C,, E)( GI.



Although the average overall effectiveness is the same for

the flat and contoured endwall, there are local differences
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Other than film attachment, the contoured endwall

simulations predict the same trends as the measurements
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The trailing edge flowfield was measured using a time
resolved particle image velocimetry (PIV) system
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The trailing edge flowfield was measured for three vertical
planes to capture the passage vortex development
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The passage vortex, indicated by the low velocity region,
moves farther away from the wall with film cooling
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Contours of turbulent kinetic energy show two bands of
peak tke, indicating the presence of two vorticies
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To accurately quantify the thermal effect of TBC,
the thermal resistance was scaled to match the engine

Overall effectiveness with TBC
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The conjugate simulations predict significant and uniform
cooling with TBC for the flat endwall
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The conjugate simulations predict similar improvements

with TBC for the contoured endwall with small differences
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Endwall contouring measurements along the streamlines
are similar to the flat endwall, with and without TBC
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Adding TBC improves ¢ more than an increase in blowing

ratio because TBC reduces
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TBC temperature is less affected by the internal cooling
and more affected by the film cooling performance
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This study demonstrates conjugate heat transfer trends for
gas turbine endwalls and the secondary flow effects

Good agreement between conjugate Demonstrate trends for:

measurements and CFD predictions
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