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PSU Completed Milestones:  
DOE Award DE-FE0005540, UTSR Project 07-01-SR127 

Measure Endwall Overall Effectiveness Completed Q8 

Measure Endwall Overall Effectiveness with Deposits Completed Q10 

Measure Endwall Overall Effectiveness with TBC Completed Q11 

Computational Predictions of Conjugate Heat Transfer, 
with and without TBC 

Completed Q12 

Measure Overall Effectiveness with Optimized Endwall 
Design (Contoured) 

Completed Q13 

Measure Contoured Endwall Overall Effectiveness with 
TBC 

Completed Q14 

Measure Velocity Fields with and without Film Cooling Completed Q14 

Computational Predictions of Contoured Endwall 
Conjugate Heat transfer, with and without TBC 

Completed Q16 

Supplementary Tasks (not in original proposal) 
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Better understanding of endwall cooling and its interaction 
with endwall contouring is needed to predict performance 
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Conjugate heat transfer measurements and predictions 
of flat and contoured endwalls will be presented 

Contoured Endwall 
Effectiveness and 
Flow Measurements 
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Matched 
Parameters 

Typical 
Engine Model 

Re∞,in (Cax) 1.25 x 105 1.25 x 105 

h∞/hi 1 0.5 - 2.3 

M = (ρcUc/ρ∞U∞) 1 – 2  0.6, 1, 2 

Bi∞ = h∞t/kw 0.27 0.30 - 0.77 

Overall effectiveness (metal temperature) 

Matching the geometry, Biot number and h∞/hi to engine 
conditions allows direct measurement of metal temperature 
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Mainstream flow is heated, and coolant flow is chilled  
to maximize driving ΔT = T∞-Tc,internal 

Wind Tunnel Side View 

Plenums Tc,in~14°C Heat Exchanger 
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T∞ ~ 54°C 

Chilled air section 
of wind tunnel 

Coolant 
Blower 
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endwall  
thermocouples 

PS 

x 

y 

SS 
D = 4.4 mm 

Thermocouples were installed on the endwall surface 
under the TBC to measure φTBC along two streamlines 

 

 

 

Film cooling 
holes, 30° 
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in-hole convection 

exiting coolant 

uniform high effectiveness 

The measurements of overall effectiveness demonstrated 
the key features of film cooling and internal impingement 
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Increasing blowing ratio improved average φ for 
impingement more than for film cooling 
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Conjugate RANS simulations used the SST k-ω model and 
an unstructured computational grid with wall prism layers 
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There is good overall agreement between the measured  
and predicted φ, except for the attachment of the jets 
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CFD temperature results show the three-dimensional 
conduction and steep gradients within the endwall 
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We simulated deposition with wax, matching the Stokes 
number, Thermal Scaling Parameter and conductivity ratio 
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The cooling systems mitigated some deposition, but 
effectiveness was reduced everywhere in the passage 
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We observed clear areas due to the film cooling jets, and 
deposition on the blade from the passage vortex 
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Roughness from the deposition degrades the cooling 
performance, resulting in higher endwall temperatures 
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Although the Nu peaks at H/D = 2.9, the area averaged φ, 
with film and impingement, is relatively insensitive to H/D 
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Contouring reduces effectiveness for impingement only, 
since hi decreases and h∞ increases from the flat endwall 
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Although the average overall effectiveness is the same for 
the flat and contoured endwall, there are local differences 
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Other than film attachment, the contoured endwall 
simulations predict the same trends as the measurements 
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The trailing edge flowfield was measured using a time 
resolved particle image velocimetry (PIV) system 

Flowfield was sampled for 3000 or 6000 images at Δt = δ/U∞ 
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The passage vortex, indicated by the low velocity region, 
moves farther away from the wall with film cooling 
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Contours of turbulent kinetic energy show two bands of 
peak tke, indicating the presence of two vorticies 
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Matched 
Parameters 

Typical 
Engine Model 

Re∞,in (Cax) 1.25 x 105 1.25 x 105 

h∞/hi 1 0.5 - 2.3 

M = (ρcUc/ρ∞U∞) 1 – 2  0.6, 1, 2 

Bi∞ = h∞t/kw 0.27 0.30 - 0.77 
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To accurately quantify the thermal effect of TBC,  
the thermal resistance was scaled to match the engine 
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The conjugate simulations predict significant and uniform 
cooling with TBC for the flat endwall 
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The conjugate simulations predict similar improvements 
with TBC for the contoured endwall with small differences 
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Adding TBC improves φ more than an increase in blowing 
ratio because TBC reduces heat transfer 
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Flat Measured,  
Mavg = 2.0 

TBC temperature is less affected by the internal cooling 
and more affected by the film cooling performance 
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This study demonstrates conjugate heat transfer trends for 
gas turbine endwalls and the secondary flow effects 
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