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Tasks completed this year for the University of 
Texas and Penn State 

Design and test realistic trench configuration 
embedded in TBC  Completed Q5-6 

Determine the effect of depositions on overall cooling 
effectiveness with trench configurations  Completed Q7 

Develop conducting endwall model  Completed Q5-6 

Measure overall effectiveness with and without film 
cooling  Completed Q7 
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Measurement of ϕ requires a matched Biot 
number model 

A simplified 1-D analysis using Taw as the driving 
temperature shows:  
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hf = heat transfer coefficient with film cooling 

t = wall thickness 

k = conductivity of the solid 
 

It is also important to match hf /hi, the ratio of internal to external 
heat transfer coefficients. Though the magnitudes of both are much 
lower, the ratio is the same. 
 

Matching these nondimensional parameters to engine conditions 
will result in engine-like results for ϕ. 
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Experiments were conducted to investigate effects of TBC 
and contaminant depositions on film cooling performance 
for a vane. 

Test section: 

• Performance was quantified in 
terms of overall effectiveness. 

• Multiple hole geometries were 
investigated. 

Flow  
direction 

Turbulence grid /  
wax sprayer location 

Test airfoil /  
deposition surface 

4 



Schematics of the internal cooling configuration for 
the vane models: 

Model vane is designed to match thermal behavior of real vane. 
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Simulated thermal barrier coating: 
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Simulated TBC was chosen to match thermal behavior of real TBC. 
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External temperatures measured using an IR camera, 
and interface temperatures measured with array of 
surface TC’s: 

• IR Thermography 
• Type E Thermocouples 

Surface Temperature: τ  
 
 
 
 

Interface Temperature: φ 

 
 
 
 

tTBC , kTBC

tv , kv

T∞

Tc

τφ

hc

h∞

Type E
Thermocouple

Showerhead Holes Pressure Side Holes

s/d -48 -39 -36
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Scaling of TBC thickness 

• To correctly simulate the thermal effects of TBC, it is important that the 
simulated TBC we use in our models is scaled appropriately 
 
 
 
 
 
 
 

 
 

Parameter Real Turbine Model Turbine Units 

Vane Thickness  1.3-3 12.7 mm  

TBC Thickness  0.14 – 0.72 1.92 & 5.1 mm  

Vane Conductivity  20 1.02 W/m-K  

TBC Conductivity  0.83 – 1.7 0.065 W/m-K  

Heat Transfer Coeff.  1500 – 5000 25 – 90 W/m2-K  

TBC/Vane Thickness  0.14 – 0.72 0.15 & 0.40 -  

TBC/Vane Conductivity  0.04 – 0.08 0.06 -  

Vane Bi  0.1 – 0.6 0.3 – 1.1 -  
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A range of TBC thicknesses being tested that simulate 
relatively thin and thick TBC. 



Effect of TBC on metal temperature, φ 
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Pressure Side Round Holes with Showerhead 



Effect of TBC on metal temperature, φ 
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Pressure Side Round Holes with Showerhead 



Film cooling configurations used with TBC on  the 
pressure side of the vane model 

Round Hole Diameter = 4.21 mm 

Pressure 
Side Holes 
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Hot MainstreamCoolant

 

 

Ideal Trench

Realistic Trench
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Effect of configuration with TBC on φ :   

Minimal change in φ with changes in configuration. 

M = 0.5, t/d = 1.21 
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Effect of configuration with TBC on φ :   

Minimal change in φ with changes in configuration. 

M = 2.0, t/d = 1.21 
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Effect of blowing ratio on metal temperature, φ with TBC 
Round Holes, t/d=1.21 Ideal Trench, t/d=1.21 

Marginal increase in φ with increasing M 
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Effect of blowing ratio on normalized exterior TBC 
temperature, τ 

M = 0.5 M = 2.0 
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These results confirmed that the trench was providing good 
external film effectiveness. 



Effect of TBC thickness on φ with no film cooling 
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Parameter Real Turbine Previous Model Current Model Units 

Vane Thickness  1.3-3 12.7 12.7 mm  

TBC Thickness  0.14 – 0.72 5.1 1.92 mm  

TBC/Vane Thickness  0.14 – 0.72 0.40 (t/d = 1.21) 0.15 (t/d = 0.46) -  
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No Film Coolant 



Effect of TBC thickness on metal temperature, φ, with film 
cooling using round holes  
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Round Holes, t/d=1.21 Round Holes, t/d=0.46 

As expected, φ decreases with decreasing TBC thickness, but 
the increase in φ is similar. 



Deposition of contaminants was simulated using the 
molten wax techniques we have described 
previously 

System generates properly scaled particles. 
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Deposition for round holes, M = 0.7: 

Pressure 
Side Holes 

Deposition almost buried round holes at M = 0.7. 
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← ← Film Coolant Flow ← ← 



Deposition for realistic trench, M = 2.0: 

Pressure 
Side Holes 

Large growth on trench lip (not shown); Minimal growth 
elsewhere. 

20 



Effect of deposition on φ for round holes and the 
realistic trench 
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Film and impingement cooling were applied 
separately and together at three blowing ratios 
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Arrangement 
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An additional chiller, heat exchanger and drier were 
installed to increase driving ΔT = T∞-Tc 

Plenums Tc~14°C Heat 
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Discharge coefficients agreed well with literature, 
and Cd was lower with the impingement plate  
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With film cooling, φ was similar with blowing ratio, 
except for an increase directly around the hole exits  
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For impingement cooling, φ was more uniformly 
distributed, and increased with blowing ratio 
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Film and impingement cooling had high φ around the film 
cooling holes, and increased with blowing ratio 
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Test 2 
Mavg = 1.0, Iavg = 0.9  
DR = 1.15 

Test 1 
Mavg = 1.0, Iavg = 0.9 
DR = 1.14 
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A repeated test showed good reproducibility of φ between 
passages and separate experiments 
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Increasing blowing ratio improved the average φ of 
impingement cooling more than film cooling 
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After x/Cax ~ 0.5, φ is higher for impingement only 
than for both because the impingement jets are free 
to spread with no film holes 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.2 0.4 0.6 0.8

Film cooling only

Impingement cooling only

Film and impingement cooling
φ lat,avg

x/Cax

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.2 0.4 0.6 0.8

Film cooling only

Impingement cooling only

Film and impingement cooling
φ lat,avg

x/Cax

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.2 0.4 0.6 0.8

Film cooling only

Impingement cooling only

Film and impingement cooling
φ lat,avg

x/Cax

Mavg = 2.0 

Mavg = 0.6 

Mavg = 1.0 

x 
y 

0.
05

 
0.

15
 

0.
2 

0.
35

 

0.
55

 x/Cax = 



34 
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.2 0.0 0.2 0.4 0.6 0.8

Film cooling only
Impingement cooling only
Film and impingement cooling

φ

y/p

Mavg = 2.0
x/Cax = 0.2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.2 0.0 0.2 0.4 0.6 0.8

Film cooling only
Impingement cooling only
Film and impingement cooling

φ

y/p

Mavg = 0.6
x/Cax = 0.2

At x/Cax = 0.2, the film cooling jets can be seen as 
well as the increase in φ from the impingement 

x 

y 
0.

2 x/Cax = 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.2 0.0 0.2 0.4 0.6 0.8

Film cooling only
Impingement cooling only
Film and impingement cooling

φ

y/p

Mavg = 1.0
x/Cax = 0.2



Applying a 1-D analysis, we estimated φ from the 
results from impingement and film alone 
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The relative difference between predicted and 
measured φ is < 5% for a large portion of M = 0.6, 1.0 
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Reducing H/D to 0.6 changed φ shape for 
impingement only contours, due to higher average hi 

H/D = 0.6 

H/D = 2.9 
Plenum H/D (imping.) Mavg Iavg h∞/hi

2.0 3.50 0.5-1.1
1.0 0.94 0.7-1.6
2.0 3.50 0.4-0.8
1.0 0.94 0.5-1.2

film + 
impingement 0.6

impingement 0.6

Mavg = 1.0  Mavg = 1.0  
 

H/D = 2.9 H/D = 0.6 
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But with film and impingement, there was not much 
effect on φ when H/D was changed to 0.6 

H/D = 2.9 H/D = 0.6 

Mavg = 1.0 Mavg = 1.0  
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Measure overall effectiveness with wax deposition 
 
 
 
 
 
 
 
 
 
Examine effectiveness and deposition results with endwall 
contouring 

H / Dmax = 3.4 

Leading Edge 

H / Dmin = 0.6 

Trailing Edge 

(H / D)leading edge= 2.9 

Next we will simulate deposition with wax, 
and test a contoured conducing endwall 
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Conclusions 

Overall cooling effectiveness when using combined TBC 
and film cooling is dominated by the cooling effects of 
TBC 

Deposits of contaminants significantly degraded the film 
effectiveness of realistic trenches, but had negligible 
effect on the overall effectiveness 

Overall effectiveness measurements demonstrated the 
influence of conduction and convective cooling within the 
film cooling holes 

Increasing blowing ratio resulted in a larger average 
increase in overall effectiveness for impingement cooling 
than film cooling 



41 Background image: [Hamed, A., Tabakoff, W., and Wenglarz, R., 2006] 

Questions? 
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