Advanced Thermal Barrier Coatings for Operation in High Hydrogen Content Gas Turbines

Gopal Dwivedi, Vaishak Viswanathan, Yang Tan, Yikai Chen Prof. Christopher M. Weyant, Prof. Sanjay Sampath

DOE UTSR Meeting, Oct 22nd, Purdue University

Center for Thermal Spray Research

DOE NETL UTSR
Contract #DE-FE0004771
2010-2014

Program Manager: Dr. Briggs while

Dwivedi et al., JACerS, DOI: 10.1111/jace.13021 Viswanathan et al., JACerS, DOI: 10.1111/jace.13033 Dwivedi et al., JTST, Under Review Viswanathan et al., JACerS, Under Review

Interplay between TBC durability and "manufactured" coating properties 3

Plasma spray is naturally suited for such layered manufacturing

Erosion Resistance

Erosion, FOD, CMAS/Ash

Sinter Resistance Low Thermal Conductivity

Transition Layer
Mitigates Zirconate/TGO Reactions

Oxidation Protection/Adhesion

Nickel Superalloy

Low-K material, Porosity, Lower sintering rate Remains complaint

Compatibility with Bondcoat Mostly traditional TBC, High toughness

Adequate roughness, oxidation resistant (dense), environmental effects

Impact of water vapor on conv. & new TBC materials

No significant difference found at this temperature, and long term exposures

Collaborative partnership with ORNL- Materials selection

- HVOF bond coats (NiCoCrAIY & NiCoCrAIYHfSi) for ORNL tesung
- ORNL is investigating the interactions with several different substrate materials

Not all bond coats are the same! Processing plays a role

Processing Effects on HVOF Bond Coats

HVOF process type and spray conditions significantly affect deposition stresses and final stress state of the coaitng.

JP5000 chosen due to microstructure and compressive stress state.

Stony Brook

University

Down selection of bond coat material

XPT: NiCoCrAIY

AMDRY: NiCoCrAIY-HfSi

Reactive element bondocat showed higher life under all the conditions

Collaboration with Dr. Bruce Pint and Dr. Allen Haynes at ORNL

BC roughness effects may overshadow chemical effects?

- □Utilize the *Fine* particle size for *Dense Oxidation Resistant* initial layer
- □Utilize the *Coarse* particle size to tailor the topography for high *surface* roughness

Two layers bond coat deposition

bond coat

Layer-2: ~50µm Coarse powder (Rough Surface)

Layer-1: ~100µm Fine powder (Dense microstructure)

Substrate

Densest bottom layer

Poor splat cohesion

Denser bottom layer

Poor splat cohesion and some cracking

Least dense bottom layer

Good particle melting and splat cohesion

Stony Brook

University

Stony Brook

University

Performance of the Two Layered Bond Coat

Similar top coats on 3 different bond coats FOCUS: Two Layered Bond Coat

Failure mechanism of TBCs: Occurring at BC-TC interface

As-deposited TBC

Milomet GGP

Failed (~600 hrs)

With extending service hours

- ☐ TGO Growth: Additional Stress build up at the interface. (limited control)
- Sintering: loss in compliance
 higher stress build up. Higher driving force for crack propagation. Process optimization to design coating with large compliance in as sprayed condition.

Majority of TBC failure occur at the BC-TC interface. Parameter of interest is Fracture Toughness.

University

Jniversity, IN

Is the toughness sensitive to microstructure of TBCs?

Fractured X-section. APS YSZ coating

Intrasplat cracks
Intersplat boundaries

Pores or voids

Lamellar pores

The defect architecture governs
Thermal conductivity and Coating
compliance

Some defects present more tortuous path to a crack than others.

These defects can be controlled via processing.

detachmen

Splat

Fracture through splats

Interlamellar pore as a possible crack path

Plasma spray can be utilized to produce significantly different microstructures.

Can we manipulate the effective fracture toughness of these structure?

Brook Brook

Fracture Toughness: Double Torsion Technique

P_{IC} - Maximum load at failure

v – Poisson's ratio

S - specimen width

S_m - moment arm

chacimon thickness

- Load
- 4 poi Advantages:
 - Does not require crack length monitoring
 - Can be performed a low thickness specimen (~600µm).

actor

 $xp(-\pi S/2t)$

Stony Brook University

Case Study: Effect of particle size distribution

Fracture toughness and modulus relationship

University

FCT life of various APS YSZ architectures

In order to limit the compliance loss

1. Porous coatings

Generally, it has been believed that the porous TBCs last longer.

2. DVCs

Multiple requirements from a thermal barrier coating

<u>Design requirements</u>

- 1. High toughness: Improved Cyclic Life
- Low modulus: Less driving force to failure
- Low thermal conductivity: Low substrate temperature

Multiple requirements from a thermal barrier coating

 $\sigma_i^s \ge \sigma_c$: Failure

Bondcoat Multilayer Topcoat

Erosion and CMAS Resistant Low thermal conductivity Phase stability

Sinter Resistant
Low Thermal conductivity

High fracture toughness layer

Oxidation protection strength/creep resistant

Ni based Superalloy Substrate

Elastic Energy approach to optimize coating architecture

Approach: Higher toughness with denser coatings...

Total Elastic Energy available for interfacial crack propagation

$$U_{isothermal} = \frac{(1+\nu)}{2(1-\nu_c)} (\Delta \alpha_c \Delta T_{sub})^2 (E_c h_c)$$

Levi et al., MRS Bulletin, 2012

High stiffness

Bondcoat

Substrate

For constant h_c

 $U_{interface} \alpha E (modulus)$

Failure occurs when

$$U_{interface} \ge Gc$$

U=0

Low stiffness TBC

Elastic Energy approach to optimize coating architecture

Total Elastic Energy available for interfacial crack propagation

$$U_{isothermal} = \frac{(1+\nu)}{2(1-\nu_c)} (\Delta \alpha_c \Delta T_{sub})^2 (E_c h_c)$$

Levi et al., MRS Bulletin, 2012

For constant h_c $U_{interface} \ \alpha \ E \ (modulus)$

Failure occurs when

$$U_{interface} \ge Gc$$

For multilayer coatings

$$U_{isothermal} = \frac{(1+\nu)}{2(1-\nu_c)} (\Delta \alpha_c \Delta T_{sub})^2 (E_{c1}h_{c1} + E_{c2}h_{c2} + E_{c3}h_{c3}....)$$

Derived from Levi et al., MRS Bulletin, 2012

Typical APS TBC

Functionally Optimized TBC with high fracture toughness interface layer

Structural Compliance Crack initiation due to TGO growth

e Bond Coat
Substrate

Porous layer for lower modulus

High Toughness Layer

Revised TBC Architecture

Conventional TBC
Porous single layer

Optimal bi-layered TBC

Bi-layer with tough nearinterface layer

Inverse bi-layered TBC

Bi-layer with inverse
architecture

FCT durability of revised TBC Architecture

Consistent improvement in TBC life for bi-layer coatings
With high toughness interface layer

Optimal bi-layered TBC

Inverse bi-layered TBC

Failed Specimens

Process optimization strategies

Conventional TBCs

Porous
YSZ
Low K
Low E

High K_{IC} TBC Layer

Overlay BC
enhanced
roughness

Superalloy Substrate

Property based design map for coatings with enhanced durability

	Traditional YSZ	New TBC Requirement			
Phase Stability	Good < 1200C	Good<1300-1400C			
Thermal Expansion	Fair	Challenging			
Thermal Conductivity*	Low	Lower			
Sintering Resistance*	Fair	Good			
Erosion Resistance*	Good	Challenging			
Fracture Toughness*	Good	Challenging			
Mechanical Compliance	known	To be explored			

- Materials' intrinsic properties
- Can be optimized via processing strategies*

Candidates for top coat composition under consideration 31

TBC Materials under considerations

Material	Composition	Advantages	Powder	
YSZ	7-8wt% YSZ	Stable below 1200 C, cost effective, properties well-characterized	Various sources, different levels of purity	
Zirconate	La ₂ Zr ₂ O ₇	Pyrochlore, low thermal conductivity, phase stability to 1400 C	Julich	
Zirconate	Gd ₂ Zr ₂ O ₇	Pyrochlore, low thermal conductivity, phase stability to 1400 C, compatible with YSZ	Saint Gobain, Julich,	
Co-doped	1.5mol%Yb ₂ O ₃ 1.5mol% Gd ₂ O ₃ 2.1mol% Y ₂ O ₃ ZrO ₂	t' phase, low thermal conductivity, sintering resistant, compatible with MCrAIY bond coat, high erosion resistance	NASA	
YSZ-AI-Ti	YSZ+20mol%AI +5mol%Ti	CMAS resistant	Ohio State Univ	

Exploring and processing new materials

Transitioning to low K TBC: $Gd_2Z_2O_7$ pyrochlores

Challenges:

- 1. CMAS mitigation
- 2. High erosion/FOD resistance
- 3. Compatibility with YSZ

All have significant dependency on processing

Coating microstructure for enhanced CMAS resistance

Porous GDZ

Dense GDZ

SiO ₂	CaO	FeO	Al_2O_3	Cr ₂ O ₃	MgO	SO ₃	TiO ₂	SrO	MnO	K ₂ O	Na ₂ O	P_2O_6
29.7	25.4	14.8	14.7	5.1	3.6	1.8	1.1	1.0	0.9	0.8	0.6	0.2

Courtesy: Prof. Nitin Padture

- ☐ Dense GDZ seems to offer lesser Lignite ash penetration depth.
- ☐ It also offer benefits in terms of erosion resistance.
- However, it has high modulus, which will increase the overall strain energy

Coating microstructure for enhanced CMAS resistance

- ☐ It also offer benefits in terms of erosion resistance.
- However, it has high modulus, which will increase the overall strain energy

Sintering behavior of new materials: Challenges

Larson Miller Parameter (LMP): Temp and Time for thermal exposure

Toughness is an issues with Cubic pyrochlore, GDZ

Larger microcracking in GDZ due to low toughness

Introduces processing challenges

FCT durability of bi-layered YSZ and Gd₂Zr₂O₇ coatings

Failed microstructure (C)

University

Systematic progress over past four years

- YSZ and GDZ process property relationships
 - Process Map development
 - Toughness, Lignite ash penetration depth, erosion

Y2

- Rough bond coat process optimization with 40% increase in FCT life
 - Two layer dense BC layer

Y3

- bi-layer YSZ coating with two fold increase in FCT life, and maintaining low K
- High toughness interface layer, Elastic energy model

- Multilayer YSZ-GDZ coating system
 - enhanced life, Lignite ash penetration minimization, erosion resistance

Extension and evaluation of multilayer YSZ-GDZ coatings

CTSR

Further reduction in the cost- Bondcoat processing, other TBC materials

GE Aviation

Different FCT cycling time

Praxair

Gradient Jet-test

CTSR

Burner rig testing with CMAS attach

CTSR

UTSR Program

Siemens

FCT

CTSR

TBC overhaul: reclaimed substrates

CTSR

Deposition and testing on an actual component

ORNL

Various cycling time and substrate material

Gratefully acknowledged

Prof. Nitin Padture

Stony Brook

University

Dr. Briggs While, Program Manager

Prof. Toshio Nakamura, Stony Brook University

Dr. Curtis Johnson, Rtd. GE GRC

Prof. John Hutchinson, Harvard university

