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Introduction to Redox Project Team

* Bryan Blackburn, CEO/CTO

— Expertise in SOFC materials /stack / reformer development, design/test of
electrical and mechanical systems, and manufacturing

— Currently Pl on 4 large Dept. of Energy SOFC projects (EERE, NETL, ARPA-E)

— Project management experience leading teams of dozens of engineers working
on materials, subsystems, and systems development

 Thomas Langdo, VP of R&D

— Expertise in the design, fabrication, and manufacturing of advanced materials,
solid state devices, and microelectronics

— Expertise in SOFC materials scale-up, techno-economic analyses, and stack
development

* Sean Bishop, Sr. Materials Engineer

— Expertise in materials characterization, processing, design and defect modeling
— Expertise in thermal and chemical expansion of materials and stoichiometry

— Project management experience for large R&D groups at MIT and Kyushu
University (Japan) focused on SOFC and related materials characterization and
development



Introduction to Partner Organizations

* CALCE
— Prof. Michael Pecht

* world leader in accelerated testing, electronic parts selection, supply-chain management

* |ed first academic research facility in the world to be ISO 9001 certified

* developed techniques for extending the lifetime of batteries and related devices under
real world operating conditions

—Prof. Peter Sandborn
* expert in system life-cycle and risk economics for various technologies

* experience in analyses for return on investment, design for availability, and maintenance
optimization for energy technologies

* UMERC

— Prof. Eric Wachsman
e active in NETL SOFC degradation investigations for more than a decade
» developed unique techniques for investigating degradation of cathode materials

» ceramic anode material used in this project developed through a multiyear UMERC/
Redox effort



Relevance: Project Objectives

* Purpose: To develop a high power density solid oxide fuel cell
(SOFC) stack that is reduction-oxidation (red-ox) stable for
robust, reliable, and lower cost distributed generation.

* Objectives: To improve the red-ox stability of Redox stacks
while reducing costs through:

—the scale-up and optimization of all-ceramic anode material processing and cell
fabrication for lower cost manufacturing;

—the determination of all-ceramic anode degradation mechanisms and
optimization of anode compositions/geometries for enhanced red-ox stability;

—the demonstration of a 1-2 kW stack that is more robust for red-ox cycling with
the use of accelerated, lifecycle, and failure testing; and

—the demonstration of at least a 10% reduction in system cost and at least a 30%
reduction O&M costs compared to a system without a red-ox stable stack.



Key SOFC Stack Degradation Issues

 Degradation mechanisms of the cell components

include
— coarsening of the microstructure over time

— decomposition of materials

— interfacial chemical reaction of electrode materials
with electrolyte at the interface

— layer delamination
— coking and sulfur poisoning of the anode

 Furthermore, nickel cermet anodes are also
prone to re-oxidation, which causes a volume
change of >60% that can mechanically damage
the anode or other components



Red-Ox Cycling: Why is it Important?

*The main limitation for Ni-based cermet anodes
(e.g. NiO/YSZ) is poor stability in red-ox cycling

 Red-ox cycles can be expected during long-term fuel cell operation
— unexpected fuel supply interruptions
— high fuel utilization under high current loads
— gas sealing failures

e Re-oxidation can result from abnormal conditions in fuel supply system

— fuel starvation and a subsequent increase in the oxygen partial pressure
above the Ni thermodynamic oxidation threshold

— oxygen ingress into the anode through pinholes and other defects in the
electrolyte, or through imperfect gas seals

* SOFCs have to cope with possible red-ox cycling during transient states
— start-up/shut-down
— cell conditioning protocols (first operation)
— thermal cycling or thermal runaway conditions
— reforming dynamics



Red-Ox Cycling and Ni-cermet Anodes

* Nickel cermet anodes offer a good balance between
power density, structural strength, and efficiency

e But, ultimately will fail upon red-ox cycling

— As much as 69% volume change

MiCro/Gracks

-~ -4
i : ; ~\‘l
— Less than desirable robustness e\ & O ,(\J,
creates the risk for long-term < 3

reliability issues (microcracks)

— Fast kinetics for reduction-oxidation
of nickel at high temperatures
(failure can be fast)

Journal of Power Sources 195 (2010) 5452—5467

— lrreversible changes to microstructure
during red-ox cycling can lead to
severe degradation in electrical
and mechanical properties
(failure can be slow)

J. Electrochem. Soc., 152 [11] (2005) A2186-A2192
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Alternate Approaches to Red-Ox Stable Stack

* Metal-supported SOFCs

— A metal-supported SOFC with a thin anode helps reduce impact
of red-ox cycling
— Processing difficulties make such cell/stack approaches difficult
e generally results in lower power densities and thus higher costs

* Ceramic anode supported cells

— Various materials developed
* titanates (e.g., SrTi, ,cNb, ,:03)
* molybdates (e.g., Sr,MgMoO,)
* chromates (e.g., Lay ,Sry; CrqsMny s O55)
* ferrites (e.g., Lag ¢Srq4 FeqoMng; O55)
 vanadates (La, gSr,,VO0; )

— Conductivity sufficient but not outstanding

— Require high temperature pretreatment to activate conductivity

* therefore cannot leverage advantages of lower
temperature operation (e.g., lower TEC mismatch)



Potential System Solutions and Tradeoffs

* Control system malfunctions, emergency-stop
situations, and natural gas supply disruption are
real possibilities

e Safety gas system is one way to deal with this

— Help with respect to catastrophic failure but with
increased cost and size
* More than 1.5 times the physical size

* Potentially contributes to doubling of the levelized cost of
electricity (LCOE) if stack needs to be replaced every 2-3 years

* Does not address long-term performance issues
associated with seal degradation



Redox’s Approach: A New Ceramic Anode Support

e Ceramic anode...minor non-stoichiometry should
create only small dimensional change

— Minimize internal stress
— Chemical tolerance

— Engineer thermal
expansion coefficient

e New Redox material

— High conductivity ~ 20 S/cm
when activated below 650°C
— Alternatives must be
activated >900 °C and
still have lower conductivity
*SNT pretreated at 930°C: 8.2 S/cm
*SNT pretreated at 650°C: 1.7 S/cm
— Most other materials

lack compatibility with GDC
electrolytes
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Ceramic Anode Cell Performance
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Ceramic Anode Cell Operational Stability

Long-term Stability

Using reformate gas mixture (> 15% CH,) at ~500 °C
with a fixed current density of 0.2 A/cm?.
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Summary
* Relatively high open circuit voltage and high power density even at

low temperatures
» Stable performance with degradation rate < 0.3% per 1000h

» Additional optimization is possible (focus of this project)
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Red-Ox Cycling Stability of New Ceramic Anode

Bar of composite (ceramic anode + GDC)
650 °C.
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* Alternating between 10% H,/N, (initial) and air

* After first few cycles, slight decrease in
conductivity, attributed to sample preparation
rather than intrinsic property of the material

» Conductivity relatively stable even after 20 cycles
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* Three-electrode symmetric cell arrangement

* Successive red-ox cycles in air and 5%H,/N,
with a N, purge in between each change in
gas composition

* Almost no change in ohmic and non-ohmic
contributions to ASR
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Red-Ox Cycling Stability of New Ceramic Anode

(C)Micro cracks
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Journal of Power Sources 195 (2010) 5452-5467

(A) SEM showing ceramic anode before
exposure to reducing gas

(B) SEM showing ceramic anode after 9 red-ox
cycles, illustrating that no major
reconstructions or other changes occur,
aside from some minor texturing of grains.

’QJ‘Q ~.1'f. (C) A comparison showing the micro-cracks
R x\ 9'*1 J.u m‘ that form during red-ox cycling of a
‘ conventional Ni-YSZ cermet.
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Red-Ox Cycling Stability of New Ceramic Anode

* XRD (not shown) shows the absence of impurity phases when the sample
is reduced at 650 °C in hydrogen for 24 hours

* Dilatometer used to measure dimensional changes of ceramic anode
pellet during red-ox cycling (H,/N, mix = N, purge => air) using an
atmosphere-controlled quartz reactor
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* ~0.12% linear expansion in switch between
a reducing and oxidizing gas environment,
which amounts to a <0.4% volume
expansion

* Considerably better than 69% volume
change for Ni=>NiO
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Project Objectives

1. Scale-up and optimization of all-ceramic anode material
processing and cell fabrication for lower cost manufacturing;

2. Determination of all-ceramic anode degradation mechanisms
with an optimization of anode compositions and geometries for
enhanced red-ox stability of the optimized, robust cells;

3. Demonstration of a 1-2 kW stack that is more robust for red-ox
cycling with the use of accelerated, lifecycle, and failure testing;
and

4. Demonstration of at least a 10% reduction in system cost and at
least a 30% reduction O&M costs compared to a system without
a red-ox stable stack.



1. Optimize Large Format Red-Ox Stable SOFC

Large format
cell process
optimization

0
mechanical
strength 3
testing t

- |

Alumina 3-point Universal Test Machine Atmosphere/
bend fixture temperature control for
mechanical tester

Atmosphere and temperature controlled fixture for
mechanical testing of cell materials under relevant
conditions and to be used in conjunction with
computational modeling.
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Task Description

Optimize shrinkage and sintering parameters for a target cell
camber of < 100 um/cm without pinholes;

Scale-up production demonstration using roll-to-roll lamination
and other techniques for low cost manufacturing;

Optimize performance with improved catalyst infiltration
Develop improved metrology techniques such as x-ray and
thermal imaging to improve quality control and thus reliability;
Use defect seeding to test both the defect metrology methods
and validate performance, reliability, and lifecycle cost models;
Determine the impact of red-ox cycling on electrical,
mechanical, catalytic, and electrocatalytic properties;
Determine the long-term stability of the materials for

continuous cycles of reduction-oxidation using techniques such
as dilatometry;

Determine the cell degradation of the anode under normal
operating conditions (relevant to stack), and under

accelerated / life-cycle oriented conditions with a focus on red-
ox cycling
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2. Develop Red-Ox Stable Stack

@™ in/mm

Task Description

* Evaluate red-ox stability of interconnect coatings and optimize as

necessary

* Develop red-ox stable anode current collectors / contact pastes

* Characterize and if necessary develop red-ox stable sealing

configurations

* Modify Redox computational model for all-ceramic anode,
incorporating electrochemistry and mechanical properties under

relevant red-ox cycling conditions
* Perform thermo-mechanical studies related to stress

Multi-Physics Computational Modeling

Stack Channels

Cell #1 \ I |
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* Takes into account thermochemical and physical
properties of materials

* Captures kinetics of electrochemical and heterogeneous
reforming reactions within anode
* Includes impact of thermal gradients on mechanical stress

within cell / stack developed during assembly,

heating, and operation

* Optimize stack designs through parametric studies
to improve fuel distribution and minimize thermal
gradients under normal operation, load following,
and shutdown conditions

Component Metric Goal
Avode meremnest s ey oy s 30 i 0 s
M eolletor ASR (e’ bnscline cell ASR < 0.2 e’ a1 630 °C.
okt Lakreeomnem) s et el el ka2
Seal Leak rate (cc/min/cm) <1% increase in fuel cross-over leak after 20

cycles, baseline is 1% of fuel flow
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S

Demonstrate 1-2 kW Red-Ox Robust Stack
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Stack Lifecycle Analysis Modeled and Evaluated Using:
* Strength, creep, and acoustic emission spectroscopy data of stack materials &
components
* Multiphysics modeling of components

* Long-term measurements under normal operational conditions
* Power output, voltage changes, component conductivity

» Accelerated stack testing under extreme temperature and load
* Modeling of material and operational costs over lifetime of stack
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4. Demonstrate Reduced System and O&M costs with TEA

Tape Casting and Cumng of Electrolyte and Substrate 25 kWe SOFC System Cost
Substate Tape m Substate Laser EWW Active
Casirg > > Cut hex) Holes Substale > Laser Cuting -> cellin $800  CHP Subsystem
Isostaic infosheefs Cu;;:‘eet - ¥ power/Electronics
$700 ¥ Housing & Final Assy
™ Cost Margin

™ Fuel Processing Subsystem
¥ Fuel Cell Subsystem

$600
CHP Subsystem

J-

Sintering, Annealing, & Screen-printing of Anode & Cathode onto Substrate

o Anode Cathode Laser Cutin g
Sintering of Anode. Cathode:
Sheets DEpU_“ Annealing —) m;en -) Annealing (seets)
(sprajing) [FL) Cells
— $100
Movgfom| /Mot from Movefrom | Move from Move from %0
Rack o Betto Rack to Betto Rack to
Bel Rack Bel Rak Bet 1,000 sys/yr 10,000 sys/yr 100,000 sys/yr 500,000 sys/yr

Manufacturing Cost Analysis of Stationary Fuel Cells, Strategic Analysis, 2012

$500

$400

$300

$200

Fuel Cell Subsystem $/kWe net

* Detailed study of actual ISO 9001 manufacturing processes and how various
automation steps can decrease costs and improve product quality with the red-ox
stable stacks;

e Trade studies on how best to form interconnects and seals in light of the design
changes that are likely to occur as a result of red-ox stack robustness;

* Sensitivity studies of various aspects of the manufacturing process as it relates to
specific design choices for the red-ox stable stack; and

e Use of roll-to-roll manufacturing and other techniques in scale-up efforts to assess
the impact on manufacturing cost in high volume.
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Project Schedule

2015 2016 2017 2018
Q-4 Q-3 Q-2 Q-1 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
12 | 01 [ 02 [ 03 [o04] 05 [o06] 07 ]08[o09]10]11]12]01 [02]03[]o04]05]o06]07[o08]o09 [10[11]12]o01]02[03]04]05[o06]07]08]09] 10]
NETL Gantt 10-24-2016 & | | | | | | | T
Task 1: Project Management, Planning& Reporting  |2.17 years
M1.1. Hold Kickoff Meetings ?
Task 2: Optimization of Large Format SOFC  [2.17 years
M2.1. Complete Materials/Cell Characterization ‘
M2.2. Complete Cell Optimization/Start ManufaZFuring Scaling (?
Task |3: Develop Red-Ox Robust Stack  |2.17 years
M3.1. Complete 10 cm x 10 cm Cell Testing ‘
M3.2. Complete Stack Red-Ox Stability|Optimization
M3.3. Demonstrate Target Cel| Performance ?
Task 4: Demonstrate a 1-2kW Red-OXx Robust Stack 6.5 months J
M4.1. 1—2k+\/5tack Demo (‘f
Task 5: Economic Analysis for System and O&M Costs  |2.17 years |

@

‘ M5.1. Dem%mstrate 10% CAPI#X and 30% O&M C%st Reduction

WBS Project Accomplishment Success Criteria
Review of materials, components, fabrication techniques, and operating conditions with
1.1 Kickoff meetings with CALCE, UMERC, |CALCE. Failure test plan, methodology, and protocols documented. Implementation of
' and Redox production partners. CALCE recommendations for improved reliability in designs moving forward based on initial
materials review.
Complete cha.racterlzatlon ofaII-ceramlc Determination of the degradation mechanisms and suitable plan created for resolution in
M2.1 anode materials & cells and determine . e )
. . production cells for validation and further testing.
degradation mechanisms
M2.2 Complete main optimization and First qualified production cells have been made and meet all critical target specifications
' scale-up to manufacturing. (i.e., cells are ready to test).
Complete NOC, accelerated, life-cycle, i, - I . . e
V3.1 and failure testing for all-ceramic anode Initial results and predictions on reliability and degradation will be assessed to identify

cells

problem areas and potential changes in approach.

11/16/2016
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Project Schedule

2015 2016 2017 2018
Q-4 Q-3 Q-2 Q-1 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
12 | 01 [ 02 [ 03 [o04] 05 [o06] 07 ]08[o09]10]11]12]01 [02]03[]o04]05]o06]07[o08]o09 [10[11]12]o01]02[03]04]05[o06]07]08]09] 10]
NETL Gantt 10-24-2016 & | | | | | | | T
Task 1: Project Management, Planning& Reporting  |2.17 years
M1.1. Hold Kickoff Meetings (‘{
Task 2: Optimization of Large Format SOFC  [2.17 years
M2.1. Complete Materials/Cell Characterization ‘
M2.2. Complete Cell Optimization/Start ManufaZFuring Scaling ?
Task |3: Develop Red-Ox Robust Stack  |2.17 years
M3.1. Complete 10 cm x 10 cm Cell Testing ‘
M3.2. Complete Stack Red-Ox Stability|Optimization
M3.3. Demonstrate Target Cel| Performance (?
Task 4: Demonstrate a 1-2kW Red-Ox Robust Stack  |6.5 months ]
M4.1. 1—2k+\/5tack Demo (‘?
Task 5: Economic Analysis for System and O&M Costs  |2.17 years |

|
‘ M5.1. Dem%mstrate 10% CAPI#X and 30% O&M C%st Reduction Q

WBS Project Accomplishment Success Criteria
Stack components optimized for red-ox | Stack components will have been demonstrated to meet targets for electrical resistance
M3.2 o " ) .
stability stability and leak rates for inclusion in red-ox stable stacks.
Demonstrate optimized 10 cm x 10 cm , 2 ot , . , o
M3.3 red-ox stable cell tested that meets Power Density = 0.75 W/cm2 at ~0.75 V operating voltage with a degradation rate < 2%
: when the stack undergoes 20 red-ox cycles.
performance metrics
Hardware demo with 1-2 kW power output which validates and confirm the approach for
follow-on commercialization and implementation efforts. Power Density Target = 0.75
Ma.1 Demonstrate 1-2 kW red-ox stable stack Wi/cm?2 at ~0.75 V operating voltage, and degradation rate demonstrated to be < 2% per 20
red-ox cycles at stack level.
M5.1 achelIr:ailaf:?tg;(t)i]r?Ctrlggjltzaasr?g c(i)gmo Confirmation that proposed stacks and system will meet cost targets for 10% reduction in
' pe rforgmance CAPEX and 30% reduction in O&M. Final lifecycle cost estimates.

11/16/2016
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Risk Management

Probabi Overall
I t
Description of Risk lity mpac Degll'ee of Risk Management Mitigation and Response Strategies
(L, M, H) (L, M, H) Risk
T (L, M, H)

Technical Risks:
Cannot scale up the . . . * Already successfully scaled > 5 cm by 5 cm
ceramic anode Medium High Medium * Will optimize that size as we move to a 10 cm x 10 cm cell.

* |dentify failure mechanisms using modeling and CALCE advanced life cycle
Cannot meet cell test methods to identify problems and address early in development cycle
degradation and Medium High Medium  laentity p y In gevelopr y

* Change operating conditions (lower temp and/or reduce operating power
performance targets . . o

density) to improve reliability.

Cannot implement * Involve Redox production partners from start
optimized, robust, reliable [ Medium |  High Medium | e Leverage project team’s and partners’ deep technical experience and
cell in manufacturing manufacturing knowledge to pursue production worthy solutions.
Cannot demo 1-2W . . . * Use Redox production components with demonstrated performance
stack meeting target Medium High Medium L { Red Il and stack devel fwork
performance everage current Redox cell and stack development work.

* Change manufacturing techniques for stacks and cells, change operating
Cannot meet stack Medium High Medium conditions (lower temp, power density) to improve reliability;

reliability targets

» Examine various alternative degradation management approaches;
consider alternative stack designs.

11/16/2016
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Risk Management

Probabi Overall
Description of Risk lity Impact Degl.'ee of Risk Management Mitigation and Response Strategies
(L, M, H) (L, M, H) Risk
T (L, M, H)
Technical Risks:
* Redox has enough dedicated test setups for stack R&D efforts.
- . . CALCE/UMERC have sufficient facilities to support their efforts as well.
Facilities not sufficient Low Medium Low ” ) I . .
* Facility/equipment upgrades can be made, or additional partners involved if
necessary.
, . . . * Core team is available, and their commitment to project is not a risk.
Right le not available | M High L
lght people not available | Medium 9 oW * Redox continues to expand with additional staff to be hired in 2016/2017.
Materials not available Low High Low * Supply lines have been established for raw materials and production
components to meet program needs.
. * Redox has broken up the project into a 18 month reliability investigation /
ﬁligf?;;hnfmedu'e Low | Medium Low optimization / design phase
* Final focused 6 month demonstration phase for testing.
* Redox will actively manage the project and closely coordinate with the
Budget Insufficient Low High Low NETL/DOE program manager.

* Should the budget be an issue, Redox will work with the PM to re-scope the
project or look for additional funding.
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