High Temperature Anode Recycle Blower for Solid Oxide Fuel Cell

Department of Energy Award No. DE-FE0027895

Prepared for DOE Kickoff Meeting By Mohawk Innovative Technology, Inc.

Temperature Anode Recycle Blower for Solid Oxide Fuel Cel

Project Team

MiTi

- Hooshang Heshmat, PhD
 - Principal Investigator
- Jose Luis Cordova, PhD
 - Program Manager
 - Thermal Management
- James F. Walton II
 - Rotordynamics
- Andrew Hunsberger
 - Aerodynamics
 - Motor/Drive

FCE

- Hossain Ghezel Ayagh, PhD
 - FCE Lead
- Stephen Jolly
 - Systems Design Engineer
- Micah Casteel, PhD
 - Mechanical Engineer

Team Background

Team Background

- MiTi: Specializes in High-Speed Oil-Free Rotating Machinery and Green Technology
 - Blowers, Compressors, Turbo-alternators, Gas-Turbine Engines, Flywheel Energy Storage, and more
- Fuel Cell Energy: is an integrated fuel cell company that designs, manufactures, installs, operates and services stationary fuel cell power plants.

Oil-Free Turbomachinery

Hydrogen Pipeline Compressor Flywheel Electromechanical Battery Micro Machining

MiTi's Broad Blower and Compressor Experience

1.5 kW H₂ blower

200 kW H₂ compressor

MiTi[®] Foil Journal Bearings Gen-V (High Load & Temp)

- Sizes from 6 to 200 mm Diameter
- DN to over 6 Million
- Speeds greater than 700,000 RPM

Company Overview

- >50 sites operating on 3 continents
- > 5 billion kWh's ultraclean power generated
- Global manufacturing
- Robust intellectual property portfolio

Project Development

Turn-key Project Delivery

Plant Operation

Mohawk Innovative Min Technology, Inc.

Long duration storage

Power-to-Gas

NASDAQ: FCEL www.fuelcellenergy.com You in 9

- FCE is developing Solid Oxide Fuel Cell (SOFC) for stationary power generation and electrolysis applications for Department of Energy (DOE)
- Initially demonstrated the operation of a 50 kW SOFC system
- FCE has selected 200kW as the commercialization platform for stationary power generation based on cost studies and voice of the customer studies
- Recent DOE project includes demonstration of a 400 kW system (2x 200kW units) at a third party site

50 kW Powerplant

200kW Powerplant

400kW SOFC System

- The 400 kW SOFC system consists of two 200 kW SOFC power plants
- Each 200 kW skid is sized as standard ISO 20' x 8' shipping container
- Thermally integrated modules enable compact and lower cost system
- Unattended Operation with Remote Monitoring
- >60% Electrical Efficiency
- >5000 hours of operation
- Heat recovery capability for > 80% total thermal efficiency

Project Objective

- To develop a scalable Oil-Free High Temperature Anode Recycle Blower (A-RCB) for Solid Oxide Fuel Cell (SOFC) power plants.
 - Design of a scalable oil-free high temperature SOFC recycle blower
 - Verify the technology through prototype proof of concept testing
 - Validate economic viability through cost-benefit analysis

Technical Approach

Project Structure

- Task 1: Project Management and Planning
 - Task 1.1: Report Preparation
- Task 2: Definition of Requirements
 - Performance
 - Economic
- Task 3: Design of Proof of Concept System
 - Task 3.1: Preliminary Design
 - Task 3.2: Preliminary Design Review
 - Task 3.3: Detailed Design
- Task 4: Hardware Fabrication and Integration
- Task 5: Blower Performance Test
- Task 6: Assessment of Outcome and Plan Forward

Task 2: Definition of Requirements

Operating conditions specified with input from subcontractor Fuel Cell Energy Inc.

Three sets of conditions to consider

- Start Up Transient
- Nominal Operation
- Rated Operation

Task 2: Operating Conditions

Three main operating regimes:

			Operating Condition		
			Nominal	Rated	Start-Up
Temperature	Т	[°C]	101	130	180 [†]
Inlet Pressure	Р	[kPa]	103.9	103.9	103.9
Mass Flow	ṁ	[kg/s]	0.033	0.036	0.022
Pressure Increase	DP	[kPa]	7.2	8.7	TBD
Mixture Components					
Hydrogen	H ₂	mol %	11.87	11.86	51.2
Methane	CH₄	mol %	12.85	12.85	5.62
Carbon Monoxide	СО	mol %	5.13	5.17	8.54
Carbon Dioxide	CO ₂	mol %	24.36	24.34	7.23
Water	H ₂ O	mol %	44.36 [‡]	44.4 [‡]	24.92
Other		mol %	1.43	1.38	2.49
[‡] Requires encapsulation of electrical components.					

⁺*May require enhanced thermal management*

Overall very low risk operating conditions.

Task 2: Pressure-Flow Requirements

Task 2: Design Considerations

- Net Power Input < 1.5 kW</p>
- Oil-Free Foil Bearing Design
 - No Lubricant Contamination
 - Low Power Loss Bearings
- Air Cooled if Possible
- Economical Design
 - Low Capital Cost
 - Low Maintenance Cost
 - Low Operating Cost

Task 3: Prototype Design

Oil-Free System Design Approach

- Aerodynamics
- Identification of Motor
- Power Electronics Integration
- Rotor-Bearing Design and Dynamics
- Thermal Analysis

Task 3: Aerodynamic Design Summary **Preliminary Sizing Results** Type = Centrifugal Diameter = 50 mm Operating Speed Range 55 krpm < N < 80 krpm</p> Efficiency > 85% Material Selection Stainless Steel

Task 3: Aerodynamic Design Performance

Task 3: Aerodynamic Power Performance

Task 3: Design – Motor Selection

- Candidate Motor Types
 - Laminated Induction
 - Lower cost
 - Requires Smaller Air Gap
 - Requires Special Sealing
 - Permanent Magnet
 - No Special Seal Required
 - Permits Larger Air Gap
 - Higher Efficiency

Task 3: Oil-Free Foil Bearing Fundamentals

- Class of Hydrodynamic Self-Acting Gas Bearings
- Large Load Capacity and Damping/Stiffness Characteristic

Task 3: Blower Layout

Task 3: Blower Cross Section

Task 3: Rotordynamics

2x Margin Relative to Max Operating Speed

Task 3: Work In Progress

- Complete Preliminary Layout
- Detailed Design
 - Rotating Components
 - Housing
 - Bearings
 - Thermal Management
- System Integration
 Manufacturing & Assembly Drawings

Task 4: Hardware Fabrication and Integration

- Fabricate and Instrument Prototype
 - Vibration/Displacement Probes
 - Thermocouples/Pressure Transducers
- Preliminary and Checkout Tests
 - Validate Instrumentation Operation
 - Verify Motor/Controller Operation
 - Confirm Rotor Lift-Off Speed
 - Demonstrate Low Speed Operation with Similitude Gas

Task 5: Test and Evaluate

- Demonstrate ability to achieve full design speed
- Measure flow rate and pressure/temperature rise with similitude gas and map performance characteristics
 Compare measured and design performance

Phase II – Test at FCE in a relevant environment

Task 6: Assessment and Plan Forward

- Compare mapped performance to design predictions
 - Identify potential design modifications to improve performance
- Use performance and cost data to identify paths for production cost reduction
- Assess scalability for higher capacity SOFC applications

Task 6: Oil-Free Blower Scalability

- MiTi Designs Capable of Supporting 100 kW to Multi-Megawatt SOFC
- MiTi has Demonstrated Oil-Free Blowers from 1 to 200 kW

Task 6: 50 kW Blower for 10 MW SOFC Scalability (Cont.)

High Efficiency Centrifugal Impeller Design

- 🔮 Dia. = 125 mm
- CDP = 18 psia
- Speed 50 kRPM
- Efficiency > 87%

Task 6: Aerodynamic Design for 10 MW SOFC

Preliminary Sizing Results
Type = Centrifugal
Diameter = 125 mm
Power = 50 kW
Efficiency > 87%

Task 6: Notional 50 kW Blower for 10 MW SOFC

Task 6: Cost Considerations and Scalability for Commercialization

Projected Cost After Product Development

Estimated Cost for First 10 Units
 1.5 kW: \$10k - \$15k / unit
 50 kW: \$40k - \$60k / unit

Project Budget

Total Estimated Cost: \$758,855.00

- Government Share: \$ 598,855.00
- Recipient Share: \$ 160,000.00

Risk Management

Main Risks (R) and Planned Mitigation Strategies (M):

 R: Thermal management: Goal for natural air cooling may result in insufficient motor cooling at startup operating condition

M: Design with provision for fitting optional oversized housing fins for enhanced natural cooling

M: Prepare design with provisions for housing modification to use previously proven forced cooling with a closed water/glycol and radiator loop

Risk Management (Continued)

- Main Risk (R) and Planned Mitigation Strategies (M):
 - R: Schedule of long lead items: Motor Magnet procurement may cause prototype fabrication delay
 - M: Handle motor set component procurement as a critical path step.
 - M: Secure quotes from multiple vendors

Risk Management (Continued)

- Main Risks (R) and Planned Mitigation Strategies (M):
 - R: Prototype Fabrication Cost: Proof of concept fabrication methods may be too expensive for eventual production
 - M: Minimize part count during detailed design
 - M: Plan for implementation of reduced cost fabrication methods for production, e.g.: castings

Technology Readiness Level

TRL Definitions

- TRL 5 System/subsystem/component validation in relevant environment:
- TRL 6 System/subsystem model or prototyping demonstration in a relevant end-to-end environment
- Prototype will be a high TRL 5 at end of Phase I
- Will achieve TRL 6 at end of Phase II

Summary

Design Requirement Reviewed

- Preliminary Design and Layout Underway
- Manufacturing to Begin 2017
- Technology is Scalable to meet Multi-Megawatt SOFC Applications

