

### Highly Selective and Stable Multivariable Gas Sensors for Enhanced Robustness and Reliability of SOFC Operation

- General Electric FE0027918
- Radislav Potyrailo (potyrailo@ge.com) PI:
- Steven Markovich (steven.markovich@netl.doe.gov) PO:
- Maureen Davison CO: Janet Laukaitis CS:

10:00 am – 11:30 am Kickoff Meeting Friday Nov. 18, Solid Oxide Fuel Cells FOA 1469



#### **Field validation**



Highly Selective and Stable Multivariable Gas Sensors for Enhanced Robustness and Reliability of SOFC Operation

- 18-month program
- to develop and perform initial field validation of stable and gasselective sensors
- for in situ monitoring of gases produced with on-site steam reforming in SOFC systems.
- The knowledge from this sensor will allow accurate SOFC control and will deliver a lower operating cost for SOFC customers.



## **Project Team Introduction/Description**



imagination at work

### Background

### Goals for wide adoption of SOFC systems:

- needs to improve cost-effectiveness, enhance operation reliability,
- improve stack robustness to deliver a lower operating cost

#### Technical strategy:

- early diagnostics of potential upsets
- ability to operate the cells at their most effective conditions

### **Technical solution:**

- real-time gas mixture composition measurements during operation
- feed of in situ inputs from gas sensors into SOFC system





### Proposed sensor vs available offerings

Available \$250,000 system, high selectivity, extensive sampling, lab operation





#### Proposed

\$10,000 - 20,000 system, high selectivity, in situ operation at high temperature



Available \$5-10 sensor, \$50 – 10,000 system poor selectivity, in situ operation at ambient temperature

In Situ

### Sampling

### Proposed sensor vs available offerings

Available \$250,000 system, high selectivity, extensive sampling, lab operation





#### Proposed

\$10,000 - 20,000 system, high selectivity, in situ operation at high temperature

### **Sensor requirements**

- High reliability (accuracy and stability)
- Low initial / operation cost
- Low power consumption



Available \$5-10 sensor, \$50 – 10,000 system poor selectivity, in situ operation at ambient temperature



### Sampling

#### imagination at work

**GE Internal** 

## **Technical approach**

- Selective sensing of gases for SOFC application by implementing a new generation of gas sensors, known as multivariable sensors
- Leverage design rules of multivariable sensors for in-situ monitoring of SOFC reforming gases
- Leverage broad expertise in functional materials to design sensor with multi-response mechanisms to gases



### **Requirements for sensors** in the era of Internet of Things and Industrial Internet

# **Top 10**

General sensor requirements

- High accuracy
- High selectivity
- Broad dynamic range
- Low initial cost
- Low operation cost
- Low power consumption
- Fast response time
- High sensitivity
- Small size
- High stability

Potyrailo, Angew. Chem. Int. Ed. Potyrailo, Mirsky, Chem. Rev. Potyrailo et al., Chem. Rev. Potyrailo, Naik, Annu. Rev. Mater. Res. Potyrailo, Chem. Rev.



- High reliability (accuracy and stability)
- Low initial / operation cost
- Low power consumption

Markets for Sensors in the Internet of Things 2014-2021 Markets for Sensors in the Industrial Internet, Potyrailo, *IDTech Internet of Things* Potyrailo, *TSensors Summit* Potyrailo, *Chem. Rev.*





Our focus: enhanced reliability (accuracy + stability) of sensors at low cost by development new transduction principles and data analytics

imagination at work

R.A. Potyrailo 2016 8

### Anatomy of conventional gas sensors



Appropriate pairing of *transducer* + *sensing material* is the key for meeting detection requirements

## Selectivity challenges in major types of sensors



Non-selective response to different gases is a significant accuracy limitation of conventional sensors Origin: conflicting requirements for sensor selectivity vs. reversibility



Potyrailo Chem. Rev. 2016

**GE Internal** 

### Sensor arrays as accepted compromise



High dispersion of sensor response improves selectivity (= accuracy)

### Breaking status quo: multivariable gas sensors



#### Selectivity:

~2,000,000-fold rejection of chemical interferences outperformed gas sensor arrays in side-by-side tests

#### Sensitivity:

part-per-million, part-per-billion, part-per-trillion

#### Individual multivariable sensors:

- Several independent responses from individual sensor
- Disruptively overcome insufficient selectivity of existing sensors

# Roadmap for our electromagnetic resonant multivariable transducers



New philosophy for highly selective sensing

Potyrailo et al., 20+ Granted US Patents

Potyrailo et al. Nature Photonics 2007 Potyrailo et al. Chem. Rev. 2011 Potyrailo et al. Proc. Natl. Acad. Sci. USA 2013 Potyrailo et al. Annu. Rev. Mater. Res. 2013 Potyrailo et al. Angew Chem. Int. Ed. 2013 Potyrailo et al. Nature Communications 2015 \*



### **Bio-inspired gas sensors**



### Design rules for gas-selectivity control:

- •Spatial orientation of surface functionalization
- •Chemistry of surface functionalization
- •Extinction and scattering of nanostructure

Nature Photonics 2007; Proc. Natl. Acad. Sci. USA 2013; Nature Communications 2015

### Plasmonic resonant multivariable sensors



# Sensor selectivity is based on interparticle spacing, dielectric constant, refractive index, and film reflectivity

Angew. Chem. Int. Ed. 2013

**GE Internal** 



# CCD imaging spectrograph built at SUNY



- CCD data acquisition for up to 8 samples on 1cm substrate simultaneously
- 300K to 1100K



# Analysis of sensing materials using CCD imaging spectrograph



 $\rm H_{2}$  (200, 500, 1000, 5000, 10000 ppm) at 500 °C in air

#### 3.893 Au-CeO<sub>2</sub> film 3.876 3.859 3.842 4.114 Au-YSZ film Peak-Squared (eV<sup>2</sup>) 4.097 4.080 4.063 3.648 Au-TiO<sub>2</sub> film 3.616 3.584 3.552 25 30 10 15 20 35 40 45 50 55 Time (hr)

#### Element 1: MBE CeO<sub>2</sub> with implanted Au

Ceria is 200nm thick
Gold particle size ~30nm
Au ~ 8 at. %

#### Element 2: PVD Au-YSZ

~30nm thick Au-YSZ
Au particle size ~25nm
~10 at.% Au

#### Element 3: PVD Au-TiO<sub>2</sub>

- ~30nm thick Au-TiO<sub>2</sub>
- •Au particle size ~25nm
- •~10 at.% Au

### **Project objective**

The program objective is to achieve the highly desired selectivity and stability of sensing of gases for SOFC application by implementing a new generation of gas sensors, known as multivariable sensors [1-6]. This program will culminate with field validation of developed sensors on GE SOFC systems.

In Phase 1, we will develop sensing materials, perform lab tests for sensitivity and stability, downselect sensor designs, and perform field validation of developed sensors on a SOFC system at GE–Fuel Cells.

Phase 1 will advance fundamental understanding of multivariable gas sensing at high temperatures and will enable cost-effective and stable sensors for SOFC applications. In situ data generated by the sensors will allow development of recommendations for Phase 2 deliverables.

(1) Potyrailo et al. *Nat. Photonics* **2007**, *1*, 123-128

- (2) Potyrailo et al. Chem. Rev. 2011, 111, 7315–7354
- (3) Carpenter et al. Anal. Chem. 2012, 84, 5025-5034
- (4) Potyrailo et al. *Proc. Natl. Acad. Sci. U.S.A.* **2013**, *110*, 15567–15572
- (5) Potyrailo et al. Nat. Commun. 2015, 6, 7959
- (6) Potyrailo Chem. Rev. 2016

### Proposed multivariable optical sensor based on interference stacks



Proof-of concept: Potyrailo et al. Nature Comm. 2015

### Proposed multivariable optical grating-based sensor



Proof-of concept: Wu, J., Distributed Fiber Optic Gas Sensing for Harsh Environment, Final Report, Department of Energy, NETL, Award DE-FC26-05NT42438 2008, http://www.osti.gov/scitech/servlets/purl/938805

# Example of proposed sensing structures and materials for multivariable optical sensors



Proof-of-concept: GE

0 Blank -4 Factor 2  $H_2$ -8 C -12 20 0 10 30 Factor 1 Proof-of-concept:

Carpenter et al. Anal. Chem. 2012, 84, 5025-5034.



imagination at work

### **Project structure**

| Task                                                                                      | Owner                               | Timing          | Objectives                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------|-------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Project management, plan-<br>ning, and reporting                                       | GE Global Research                  | Months<br>1-18  | Defined by DOE; risk management, coordination, reporting                                                                                                                                                                                           |
| 2. Validate selectivity of multi-<br>variable sensor system in labora-<br>tory conditions | GE Global Research<br>SUNY Poly     | Months<br>1-9   | <ul> <li>Develop requirements for spectral dispersion for multivariable<br/>transducers and optical changes of sensing materials for gas<br/>monitoring at required levels</li> <li>Establish gas-selectivity ranking of tested sensors</li> </ul> |
| 3. Validate stability of multivari-<br>able sensor system in laboratory<br>conditions     | GE Global Research                  | Months<br>10-15 | <ul> <li>Establish protocol of sensor stability test, employ benchmarks<br/>on non-patterned surfaces</li> <li>Establish stability ranking of tested sensors</li> </ul>                                                                            |
| 4. Field-validate multivariable<br>sensor system at GE–Fuel Cells<br>factory              | GE Global Research<br>GE-Fuel Cells | Months<br>16-18 | <ul> <li>Validate developed sensors in operation cycles of a 50-kW</li> <li>SOFC system</li> <li>Develop recommendations for Phase 2 deliverables</li> </ul>                                                                                       |

### **Deliverables and milestones**

#### Deliverables

| Task | Deliverable                                                                    |  |  |  |
|------|--------------------------------------------------------------------------------|--|--|--|
| 1    | Quarterly reports, updated risks, final report                                 |  |  |  |
| 2    | Characterization data of sensing materials deposited on optical transducers    |  |  |  |
| 2    | Sensor data and gas-selectivity ranking of transducer<br>/sensing film systems |  |  |  |
| 3    | Characterization data of sensor aging                                          |  |  |  |
| 3    | Sensor data and stability ranking of transducer /sensing film systems          |  |  |  |
| 4    | Sensor data of field validation in a 50 kW SOFC system                         |  |  |  |

### **Milestones Log**

| Task<br>Number | Description                                                                                             | Planned<br>Completion<br>Date | Actual<br>Completion<br>Date |
|----------------|---------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|
| 1              | Updated Project Management Plan and Data Management Plan                                                | 10/15/2016                    |                              |
| 1              | Kickoff Meeting                                                                                         | 10/15/2016                    |                              |
| 2              | Developed sensor systems demonstrate selectivity toward gases of interest                               | 6/30/2017                     |                              |
| 3              | Developed sensor systems demonstrate performance stability of at least 2 weeks                          | 12/31/2017                    |                              |
| 4              | Developed sensor systems operational in field tests with SOFC system for in-<br>situ detection of gases | 3/31/2018                     |                              |

# Selectivity optimization of multivariable optical gas sensors



imagination at work

### Improvement of material and system stability using a four-step Six Sigma process



### Stability improvement of GE's materials and structures by implementing Six Sigma for product development



# Technology Readiness Level / commercialization goals



### From sensor ideas to commercial products



### **Money investment:** 1 : 10 : 100 : 1000

proof-of-concept  $\rightarrow$  working prototype  $\rightarrow$  pilot scale production  $\rightarrow$  product launch

### Time investment: several years

G.Whitesides, Lab on a Chip, 2013; GE TrueSense Personal Water Analytics: The Prism Awards for Photonics Innovation Winners 2011





