

Performance and Reliability Advancements in a Durable Low Temperature Tubular SOFC DE- FE0028063 November 17th, 2016

Contents

- Background
- Project objective
- Technical approach
- **Project structure**
- Project schedule
- Project budget
- Risk Management (Identification and mitigation)

Atrex Energy Commercial Product Background

Atrex currently provides products targeting remote applications that need 100 to 4500W power

Reliable Power

- Outputs from 100W up to 4500W at 2VDC up to 60VDC
- Continuous duty, onsite power
- High availability
- Grid-independent, backup capability

Cost-Effective

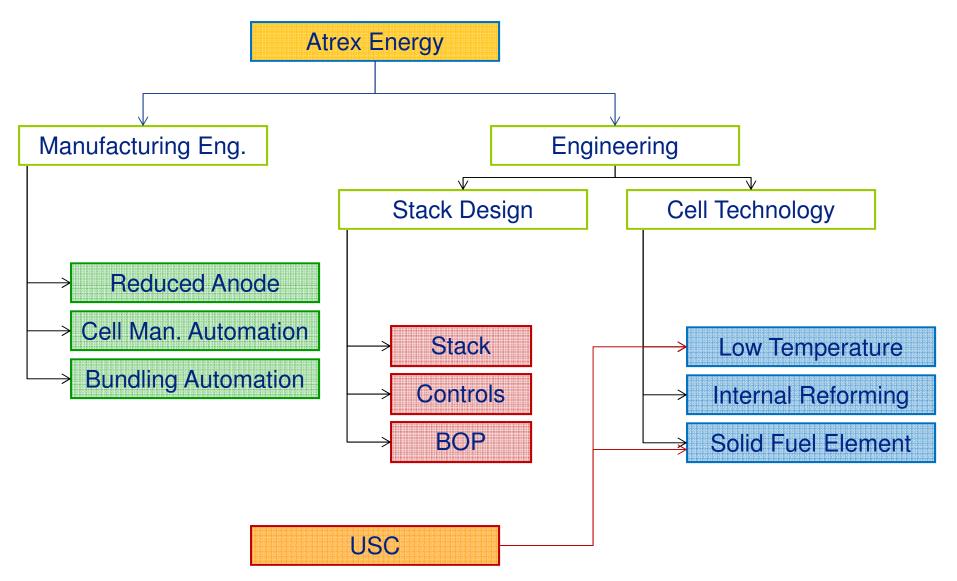
- Low-maintenance
- Scalable
- Hi fuel efficiency = low fuel consumption
- Competitive "Total Cost of Ownership"

Key Feature - Scalable with Minimal Maintenance

- Replaceable cartridge , 3 year expected life
- Upgradable The 250 watt unit can be upgraded to a 500 watt output and the 1000 watt unit can be upgraded to a 1500 watt output by simply replacing the Bundles.
- Parallelization Multiple power generators can be linked to increase the output
- Minimal Maintenance the only parts requiring regular maintenance checkups are the air and fuel filters.

Project Objective

- Commercial lessons are clear. Widespread market acceptance requires low cost and reliability
- Ultimate project aim is for a <u>low cost</u> fuel cell system through improved technology and production automation
 - Reduction in materials costs (lower temperature operation, thin cells)
 - Reduction in labor cost (production automation)
 - Reduced ROI (increased efficiency through internal reforming)
 - Increase in reliability (inexpensive solid fuel element for overload protection)
- Month long demonstration of a low cost, low degradation natural gas fueled 5kW system by September 2018



Technological Approach to Low Cost Reliable SOFC Systems

		Degradat	Reliabil	Efficien		
No.	Innovation	ion	ity	су	Cost	Risk
1	Integral solid fuel element	\checkmark	\checkmark			Med.
2	Passivated catalytic injector		\checkmark	\checkmark		Med.
3	Low Temp Electrode impregnations	\checkmark		\checkmark		Low
4	Automated bundle assembly		\checkmark		\checkmark	High
5	LT Sintering aids for ceria layer		\checkmark		\checkmark	Med.
6	Pressing automation				\checkmark	Med.
7	Automated electrode impregnation		\checkmark		\checkmark	Med.

Project Structure: Company wide effort

Schedule (October2016–September 2018)

fask Name												
Performance and Reliability Advancements in a Durable LT Tubular SOFC	M1 M2 M3	3 M4	M5 M6	M7	M8 M9	M10 M11	M12 M13	M14 M15	M16 M1	7 M18 M19	i M20 M21	M22 M23 N
Task 1. Project Management and Planning	(
Task 2. Unit Cell Development												
2.1 Cell Integral Reformer												
2.2 Low temperature cell modifications	1											
2.2.1 Electrode Augmentation												
2.2.2 SDC Low temperature firing improved resist.	[
2.3 Cell solid fuel component development	1											
2.3.1 Materials development	(
2.3.2 Solid fuel integration	ĺ											
2.4 Cell Testing Activities	(
2.5 Cell Microanalysis	[
2.6 Cell Modeling	(
Task 3 Thinner Tube by Isostatic Pressing Automation									•			
3.1 Mold Redesign												
3.2 Powder Filling Automation	Í.											
3.3 Validation of New Mold and Automation Methodology	Í.							1				
3.4 Validation of Cost Savings	Í.						.		8			
Task 4. Automated Method for Electrode Impregnation	i 🗖											
Task 5. Automated Bundle Assembly												
5.1 Layering Concept Development												
5.2 Curing Proof of Concept	Í.											
5.3 Automation Proof of Concept	Í.											
Task 6. Stack design and test stack builds	Í.		-									
6.1 System modeling	Í.											
6.2 Algorithm and firmware development	Í.											
6.3 Bundle design and Test Bundle builds	Í.											
6.4 Final 5 Kw Stack Design	Í.)			0-			
Task 7. 5 Kw System Demonstration Unit	Í.					Y						
7.1 Stack (Hotbox) build	í.							•				
7.2 System Design and build	í.					¢.						
7.3 Test plan and Test site development	í.									• <u>_</u>		
7.4 Stack Testing and Demonstration	í.									X		
7.5 MegaWatt Performance, Cost and Reliability Feasibility	1										ă 🗰	

Project Milestones 1

Milestone No (SOPO Task No.)	Milestone Description	Completion Risk	Planned Completion
1 (2.1/2.4)	Long term cell test started for low O/C and low temperature (650°C)	Low	12/31/2016
2 (2.3.2)	Preliminary Iron or other solid fuel bed insert	Moderate	12/31/2016
3 (2.3/2.4)	Long term cell test started for fuel bed and low temperature (650°C)	Low	3/1/2017
4 (7.3)	1 st Bundle test of 2 of 3 innovations	Low	3/31/2017
5 (7.3)	2nd Bundle test of 2 of 3 innovations	Low	5/31/2017
6 (7.3)	3nd Bundle test of 2 of 3 innovations	Low	7/31/2017
7 (2.2.1)	USC: Mass-loading-performance relationship for impregnations	Low	9/1/2017

Project Milestones 2

Milestone No	Milestone Description	Completion	Planned
(SOPO Task No.)		Risk	Completion
8	Thin wall cell on test	Low	9/1/2017
(3.0/2.4)			
9	4 th Bundle test: Thin wall cells	Moderate	1/1/2018
(7.3)			
10	Robotic bundle assembly test	Moderate	2/28/2018
(7.4)			
11	Final stack design 5kW	Low	3/31/2018
(5.0)			
12	USC: Developed the final makeup for	Moderate	3/31/2018
(2.3.1)	an optimized chemical bed		
13	USC: Recipe for sintering aid for low-	Moderate	3/31/2018
(2.2.2)	temperature CeO2 barrier layer		
14	Test plan	Low	5/1/2018
(8.3)			
15	5kW demonstration start	Moderate	8/1/2018
(8.4)			

Cell Performance Improvement

- Intermediate temperature operation
 - Cell performance improvement at intermediate temperature by electrode engineering
 - Long term cell test to verify degradation
- Low O/C CPOX fuel operation
 - Develop catalyst for low O/C operation with improved efficiency and without carbon formation
- Overloading protection
 - Develop solid fuel process recipe
 - Demonstrate overloading protection by solid fuel element

Cost Reduction - Automation

- Will review Tubular Cell Manufacturing Methods
 - Focus on thin wall cells
 - Isostatic Tube Pressing or other technique
- Robotic Stack Assembly
 - Concepts still need to be developed
- 5kW Concept
 - Twin replaceable bundles
 - Parts close to certified product line

Current Progress

- Program Management
 - DOE contract has been signed
 - Sub contract and NDA with USC imminent: expected to be signed this week
 - Human resources at USC and Atrex have been directed. Technical teams and meeting schedules have been organized
- Technical
 - Demonstration of Low O/C CPOX in cell at 650°C completed
 - Pressing of solid fuel beds for actual cell completed; overloading protection demonstrated

Program Risk- Technical

Description of Risk	Probab ility	Impact	Overall Degree of Risk	Risk management and mitigation strategy
Technical Risk				
Cell performance does not achieve goals at low temperature	Low	High	Moderate	Cell testing has already shown that concentration polarization accounts for a significant loss. Two tasks (low O/C) and thinner anode support tubes will counteract performance loss due to the temperature
Long term stability of nano- scale impregnations	Low	Moderate	Moderate	 Cell testing will start very early in this project so that modifications can be tested often and as necessary Recipes from other collaborations can be brought into the project if USC is unsuccessful
Solid fuel component carbon fouling	Low	Moderate	Moderate	 O/C will be modulated with current density and the solid fuel positioned in the cell region of highest FU so that the water is protective. The fuel element can be modified to include a gasification catalyst <i>e.g.</i> ceria much like the anode
Isostatic pressed cells cannot be automatically manufactured on schedule	Moderate Moderate Moderate Moderate Moderate Moderate			 Cells will be manually formed from the mold if automation is not possible If yield is too poor at least single cell tests and 20 cell bundle tests will be completed with these manually fabricated cells in order to attain the necessary data for projections
Carbon formation in injectors at low O/C	Moderate	High	High	 Low O/C reforming has been proven viable but carbon fouling is sensitive to metal surface and catalyst preparation. Several routes for passivation exist. For cost we will screen aluminization, use of alumina forming stainless steels, and only if necessary alumina forming nickel alloys. As a last resort if unsuccessful, integral autothermal reforming (condensed water recycle) could be employed, but at the cost of BOP complexity
Robotic assembly of stacks	High	Low	Moderate	 Concept for robotic assembly will be started early in the project A go no-go evaluation will occur early in the project to so that unnecessary capital investment in robotics does not take place The 5kW demonstration, nor any of the performance and degradation metrics depend on the robotic assembly

Program Risk- Resources and Management

Description of Risk	Probab ility	Impact	Overall Degree of Risk	Risk management and mitigation strategy			
Resource Risk							
Acumentrics personnel diverted to other projects	Low	High	Moderate	 The topic of SOFC commercialization through innovation is in line with our mission. The manufacturing tasks selected for the project are from an internal review for mass production The PIs for the project have been selected from the management and executive level and will re-address resources as needed. 			
Staff Attrition	Moderate	Moderate	 In the event that staff leave Atrex or USC, resources from within the company will be reallocated and new personnes be hired as soon as possible. Acumentrics' plan in general is to maintain a redundancy expertise to avoid such problems 				
Insufficient funding		Moderate	Moderate	•The tasks in this project can be highly leveraged against current awards or external research contracts if supplementary funds are required to complete a task			
Management Risks							
Poor management	Low	High	Moderate	The project will be reviewed by the Director of Engineering monthly. Insufficient progress will be escalated to the COO and weekly reviews will commence from that point			
5kW demonstration schedule delays	Moderate	Low	Moderate	Atrex has amassed experience delivering on 3 and 10kW SOFC projects. Acumentrics will use all resources possible to stay on schedule, however delays outside Atrex' control will be reported to the DOE project manager			

Funding Profile

			Fisc	10/1/16-9/30/	17)	
	Bas	seline Cost]	Plan	Cum	ulative Baseline Cost l	
	Federal Share	Non- Federal Share	TOTAL	Federal Share	Non-Federal Share	
October	\$81602	\$20400	\$102002	\$81,602	\$20,400	
November	\$81602	\$20400	\$102002	\$163,204	\$40,800	
December	\$81602	\$20400	\$102002	\$244,806	\$61,200	
January	\$117177	\$29294	\$146471	\$361,983	\$90,494	
February	\$117177	\$29294	\$146471	\$479,160	\$119,788	
March	\$117177	\$29294	\$146471	\$596,337	\$149,082	
April	\$117177	\$29294	\$146471	\$713,514	\$178,376	
May	\$117177	\$29294	\$146471	\$830,691	\$207,670	
Iune	\$90496	\$22624	\$113119	\$921,187	\$230,294	
July	\$90496	\$22624	\$113119	\$1,011,683	\$252,918	
August	\$90496	\$22624	\$113119	\$1,102,179	\$275,542	
	\$90496	\$22624				I
September			\$113119	\$1,192,675	\$298,166	
	\$1,192,67		\$1,490,83			
TOTAL	1	\$298,167	8	\$1,192,671	\$298,167	

	Budget Period 1 10/01/16-09/30/17		0	Period 2 -03/30/18	Total Project		
	Gov't	Cost Share	Gov't Share	Cost Share	Government	Cost Share	
	Share				Share		
Atrex Energy	\$1,067,245	\$266,811	1,138,996	\$284,749	\$2,206,241	\$551,560	
Univ.of South	\$125,426	\$31,357	\$124.561	\$31,140	\$249,987	\$62.497	
Carolina	+,	+ ,	+	+,	+ = 12 ,2 0 1	+ = , . , .	

