National Carbon Capture Center: Post-Combustion Focus Project NT0000749

Doug Maxwell 2010 NETL CO₂ Capture Technology Meeting September 15, 2010

Southern Company Facts and Figures

- <u>Regulated Utilities</u>
- Alabama Power
- Georgia Power
- Gulf Power
- Mississippi Power
- Southern Nuclear
- <u>Competitive Power</u>
- Southern Power
- Southern Generation
- <u>Other</u>
- Southern LINC Wireless
- Southern Telecom

- >42,900 MW of capacity
- Diversified sources of energy (2009 generation)

-57% coal -23% gas -16% nuclear -4% hydro

"The highest rated electric utility in America by the American Customer Satisfaction Index over the past 10 years."

National Carbon Capture Center

- New Cooperative Agreement DE-NT0000749 effective October 1, 2008 for five years through September 31, 2013
- National Carbon Capture Center established at Power Systems Development Facility in Wilsonville, AL

DOE/NETL Project Manager – Mike Mosser

U.S. Department of Energy National Carbon Capture Center

at the Power Systems Development Facility

PARTICIPANTS:

Managed by Southern Company Services, Inc.

The National Carbon Capture Center

Managed and Operated for DOE by Southern Company

Bringing together science and innovation in technology development, along with real-world testing capability, to achieve cost-effective and reliable capture of carbon dioxide from coal-based power generation.

- Flexible testing at various scales
- Facilities for scale-up from bench to engineering-scale
- Collaboration with wide variety of participants and partners
- Finding "best-in-class" technology
- Accelerated path to cost-effective CO2 capture technology
- All 3 major areas of CO2 Capture: -Post Combustion -Pre-combustion -Oxy-combustion

Focus of NCCC Technical Program

Located at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama

Pre-combustion CO2 capture facility

Post-combustion CO2 capture facility

Topics Today

Pilot Solvent Test Unit (PSTU) Process Design and Test Planning

&

Post-Combustion Carbon Capture Center (PC4) Construction Update

Alabama Power Plant E.C. Gaston Wilsonville, Alabama

Post-Combustion Layout

PSTU

Balance of Plant

<u>compa</u>

Pilot Solvent Test Unit

- Build a highly flexible test bed using a real flue gas for post-combustion CO₂ capture
- Long-term testing of newly-developed and potential solvents from 3rd party developers
- Baseline solvent for sizing: 20-30%wt MEA
- Overall CO₂ removal rate: $\geq 90\%$
- Flue gas flow rate: 5,000 lb/hr (~0.5 MW, ~10 t/d CO₂)
- Turndown ratios: 2:1 for gas, 3~5:1 for liquid
- Modular structure arrangement
- Flexible process configuration and testing conditions

Next Steps

- •Complete PSTU and BOP Installation
- •System Integrity and Functional Check
- •PSTU/BOP System Commissioning
- •Baseline Tests with MEA
- Test New Solvents from Developers

PSTU Test Planning

Item	Media	Tentative Schedule	Duration
Commissioning	Water & 20% MEA	4Q '10 – 1Q '11	As Needed
Baseline Run	MEA	1Q , 2011	500~1000 hr
B&W	New Solvent	2Q, 2011	TBD
Developer A	New Solvent	TBD	TBD
Developer B	New Solvent/System	TBD	TBD
Developer C	New Solvent/System	TBD	TBD

SOUT

PSTU Equipment Design Validation

Items:

- •Hydraulic Performance (Q, P, ΔP, H, ...)
- •Thermal Performance (E, T, ΔT, Approach, Heat Loss, ...)
- Instrument Accuracy and Rangeability
- •Control Logic and Strategy (Global, Local, ...)
- •Operability and Flexibility (Robustness, Turndown, ...)

Methods and Approaches:

- •Separate and Independent Measurements of Key Parameters (Cross-Check)
- •Calibrations of Key Instruments
- •Heat and Material Balance
- •Modeling and Simulation
- •Gas and Liquid Analyses (Lab Analysis to Cross-Check)

Performance Evaluation

<u>Objective</u>: CO_2 Removal \geq Goal (e.g., 90%)

While: Minimizing Energy and Water Consumption

By Optimizing:

- –Lean and Rich Loading (CO₂/Solvent)
 - -Solvent Circulation Rate (L/G Ratio)
 - -Steam Consumption (S/L Ratio)
 - -Temperature Profile (Reaction, Regeneration, Bed, In/Out, ...)
 - -Hardware/Process Configuration (Packing, Flow Path, ...)
 - -Other Parameters

Design of Experiment (DoE)

Develop Test Matrix

Solvent Evaluation

- •Kinetics
- Loading Capacity
- Heat of Reaction
- Regeneration Energy Consumption
- •Degradation Potential and Products
- Corrosion Intensity
- •Others

- •Our Objective Establish a Flexible Test Bed
- •Our Mission Test New Solvents
- •Our Results Get Data to Advance Technology
- •Our Status It Will Be Ready Soon

Post-Combustion Site Preparation

Site Preparation & Plant Tie-Ins

Reroute Underground Piping & Underground Firewater System

Flue Gas Supply Flue Gas Return Utilities (steam, water...)

Caisson and Column Foundation

- 72 Caissons
- 30 Micropiles
- 28 utility bridge support column units

Modular Utility Bridge Assembly

Modular Utility Bridge Assembly

Modular Utility Bridge Assembly

Bridge Module Interconnections

Pilot Solvent Test Unit Assembly

Pilot Solvent Test Unit Delivery

Pilot Solvent Test Unit Installation

Pilot Solvent Test Unit Installation

Pilot Solvent Test Unit

Balance of Plant

Cooling Tower

Solvent Storage Tanks

SOUT

Control Room/Admin Building

Transformer & MCC Building Installation

Questions?

